
SYNTAX

Matt Post
IntroHLT class
5 September 2024

S o g o r g e o u s w a s t h e
spectacle on the May morning
of 1910 when nine kings rode
in the funeral of Edward VII of
England that the crowd,
waiting in hushed and black-
clad awe, could not keep
back gasps of admiration.

Barbara W. Tuchman, The Guns of August

morning keep could awe, the
crowd, admiration. in hushed
and black-clad of funeral May
gorgeous of not on of rode
waiting the VII England 1910
back that spectacle the
Edward the in gasps kings
was when nine of So

Other examples

4

for i in range(args.N):
print(i)

i in: i for range(print)

GOOD BAD

<html>
 <p>
 Lorem ipsum
 </p>
</html>

ipsum </p></html>
 <h>

Lorem
 <ptml>

python
program

HTML

URLshttp://google.com gsd@ht//:ww

What are the abstractions and tools
that underlie all of these examples?

Today we will cover

6

formal
language

theory
natural

language parsing

abstractions
for reasoning
about
structure

applying
structure to
natural
phenomena

making them
usable by a
computer

math linguistics engineering

Goals for today
• After today, you should be able to

– describe syntax both mathematically and linguistically
– enumerate the formal language (Chomsky) hierarchy
– provide a description of constituent grammars
– sketch the algorithm for CKY parsing

7

Outline

8

formal
language

theory
natural

language parsing

Formal Language Theory
• Generalization: define a language to be a set of strings

under some alphabet,
– e.g., the set of valid English sentences (where the

“alphabet” is English words), or the set of valid Python
programs

Σ

9

Formal Language Theory
• Generalization: define a language to be a set of strings

under some alphabet,
– e.g., the set of valid English sentences (where the

“alphabet” is English words), or the set of valid Python
programs

Σ

• Formal Language Theory provides a common framework
for studying properties of these languages, e.g.,
– Is this file a valid C++ program? A valid Czech

sentence?
– What is the structure? <=> How do I find its meaning?
– How hard / time-consuming is it to answer these

questions?
9

Languages as sets
•

• What do you think these languages describe (in words?) 
 

 
 

Σ = {0,1,2,3,4,5,6,7,8,9}

ℒ1 = {0, 1, 2, 3, 4, 5, …}
ℒ2 = {−12.4, 0, 142, 142.1, 142.01, 142.001, …}

10

Definitions

11

formal
name think… description repr

letter token
the fundamental unit under

consideration (e.g., a word, or a
UTF-8-encoded letter)

alphabet vocabulary A set of tokens

word “string” a sequence of zero or more tokens in
the vocabulary

language language a set of strings

a, b, …

Σ

ℒ

α, β, …

Some notes
• is the set of all strings in a vocabulary,
• One special string is the empty string, {} or
• A language can be very large—even infinite!

– In fact, most languages probably are
– List a few

Σ* Σ
ϵ

ℒ

12

Generative descriptions of lang.
• A definition of languages as sets is not very useful

– Why not?
• A better approach:

– Develop a process that can describe how strings in a
language

– New membership criteria:
∎ IN: can be generated by this process
∎ OUT: cannot be generated by this process

•

13

Generative examples
•

• You probably know one generative process already:
regular expressions

• What do these languages describe (in words?) 
 

 

Σ = {0,1,2,3,4,5,6,7,8,9}

ℒ1 = Σ*
ℒ2 = 0 ∣ [1 − 9][0 − 9] *

14

Regular language examples
• How can we write the following languages?

– All floating point numbers
– Email addresses

• These are much more compact representations compared
to their set notations!

15

Regular languages with rules
• The “regular expression” syntax is a shortcut

representation
• We can describe the generative process more formally

using a set of rules that are recursively applied  
 
 

• Rules have two types of symbols:
– terminal symbols (lowercase letter) are normal

vocabulary items
– nonterminal symbols (capital letters) are recursively

replaced until there are no more of them
16

A → Aa
A → a

Previous examples as rules
• Σ = {0,1,2,3,4,5,6,7,8,9}

17

Previous examples as rules
• Σ = {0,1,2,3,4,5,6,7,8,9}
•  

S → A 
A → 0A 
A → 1A 
A → 2A 
… 
A → 9A

ℒ1 = Σ*

17

Previous examples as rules
• Σ = {0,1,2,3,4,5,6,7,8,9}
•  

S → A 
A → 0A 
A → 1A 
A → 2A 
… 
A → 9A

ℒ1 = Σ*

• A → ϵ

17

Previous examples as rules
• Σ = {0,1,2,3,4,5,6,7,8,9}
• ℒ2 = 0 ∣ [1 − 9][0 − 9] *

18

Previous examples as rules
• Σ = {0,1,2,3,4,5,6,7,8,9}
• ℒ2 = 0 ∣ [1 − 9][0 − 9] *
• S→A 

A→0  
A→1B 
A→2B 
… 
A→9B 
B→0B 
B→1B 
… 
B→9B 
B→ϵ

18

Formal definition of a language
• Definitions: consider the set , where

– is the vocabulary which is a finite set of terminal
symbols

– is a finite set of nonterminals symbols
– is a special nonterminal called the start symbol
– are strings of zero or more terminal and

nonterminal symbols
– is a set of rules of the form

(Σ, N, S ∈ N, R)
Σ

N
S ∈ N
α, β, and γ

R αNβ → γ

19

Regular languages
• Definitions: consider the set , where

– is the vocabulary which is a finite set of terminal symbols
– is a finite set of nonterminals symbols
– is a special nonterminal called the start symbol
– are strings of zero or more terminal and nonterminal symbols
– is a set of rules of the form

(Σ, N, S ∈ N, R)
Σ
N
S ∈ N
α, β, and γ
R αNβ → γ

20

Type Rules Name Recognized by

3 Regular Regular
expressionsA → aB

• All the languages we created earlier (for example, the set
of email addresses) can be described with such rules

Context-free languages
• Definitions: consider the set , where

– is the vocabulary which is a finite set of terminal symbols
– is a finite set of nonterminals symbols
– is a special nonterminal called the start symbol
– are strings of zero or more terminal and nonterminal symbols
– is a set of rules of the form

(Σ, N, S ∈ N, R)
Σ
N
S ∈ N
α, β, and γ
R αNβ → γ

21

Type Rules Name Recognized by

2 Context-free Pushdown
automata

• This change might seem small, but it fundamentally alters
the kinds of languages that can be generated

A → α

Context-free and not regular
• Σ = {a, b, c, …, z}
• Create a context-free language for , the set of

palindromes
ℒ

22

Context-free and not regular
• Σ = {a, b, c, …, z}
• Create a context-free language for , the set of

palindromes
ℒ

• S→A 
A→aAa  
A→bAb  
… 
A→zAz 
A→ϵ

22

Context-free and not regular
• Σ = {a, b, c, …, z}
• Create a context-free language for , the set of

palindromes
ℒ

• S→A 
A→aAa  
A→bAb  
… 
A→zAz 
A→ϵ

• Can you do this with the regular language constraint on
rules?

22

The Chomsky Hierarchy
• Named after Noam Chomsky, the MIT linguist
• Different constraints on the rules lead to more powerful

sets of languages that can be described
• More powerful languages are harder (meaning, more

compute-intensive) to recognize

23

The Chomsky Hierarchy
• Definitions: consider the set , where

– is the vocabulary which is a finite set of terminal symbols
– is a finite set of nonterminals symbols
– is a special nonterminal called the start symbol
– are strings of zero or more terminal and nonterminal symbols
– is a set of rules of the form

(Σ, N, S ∈ N, R)
Σ
N
S ∈ N
α, β, and γ
R αNβ → γ

24

Type Rules Name Recognized by Complexity

3 Regular Regular
expressions

2 Context-free Pushdown
automata

1 Context-
sensitive

Linear-bounded
Turing machine

0 Recursively
enumerable

Turing
Machines undecidable

A → aB

A → α

A → α β αγβ

A → α β γ

𝒪(n)

𝒪(n3)

𝒪(2n)

Summary
• This view of languages (not sets, but “capturing”

generative processes) is very productive

25

Summary
• This view of languages (not sets, but “capturing”

generative processes) is very productive
• We can generalize this discussion to make a connection

between natural and other kinds of languages

25

Summary
• This view of languages (not sets, but “capturing”

generative processes) is very productive
• We can generalize this discussion to make a connection

between natural and other kinds of languages
• Consider, for example, computer programs

– They either compile or don’t compile
– Their structure determines their interpretation

25

Summary
• This view of languages (not sets, but “capturing”

generative processes) is very productive
• We can generalize this discussion to make a connection

between natural and other kinds of languages
• Consider, for example, computer programs

– They either compile or don’t compile
– Their structure determines their interpretation

• What is the structure?

25

Outline

26

formal
language

theory
parsingnatural

language

Linguistic fields of study
• Phonetics: sounds

27

Linguistic fields of study
• Phonetics: sounds
• Phonology: sound systems

27

Linguistic fields of study
• Phonetics: sounds
• Phonology: sound systems
• Morphology: internal word structure

27

Linguistic fields of study
• Phonetics: sounds
• Phonology: sound systems
• Morphology: internal word structure
• Syntax: external word structure (sentences)

27

Linguistic fields of study
• Phonetics: sounds
• Phonology: sound systems
• Morphology: internal word structure
• Syntax: external word structure (sentences)
• Semantics: sentence meaning

27

Linguistic fields of study
• Phonetics: sounds
• Phonology: sound systems
• Morphology: internal word structure
• Syntax: external word structure (sentences)
• Semantics: sentence meaning
• Pragmatics: contextualized meaning and communicative

goals

27

Today’s focus
• Excellent book
• Organized into 100 mini-

lectures
• PDF available for free via

JHU library (along with
tens of others in the
series)

• https://tinyurl.com/
linguistic-fundamentals

28

Morgan Claypool Publishers&
SYNTHESIS LECTURES ON
HUMAN LANGUAGE TECHNOLOGIES

w w w . m o r g a n c l a y p o o l . c o m

Series Editor: Graeme Hirst, University of Toronto
CM& Morgan Claypool Publishers&

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com

SYNTHESIS LECTURES ON
HUMAN LANGUAGE TECHNOLOGIES

Graeme Hirst, Series Editor

ISBN: 978-1-62705-011-1

9 781627 050111

90000

Series ISSN: 1947-4040 BENDER
LINGUISTIC FUNDAM

ENTALS FOR NATURAL LANGUAGE PROCESSING
M

O
R
G
A
N

&
C
L
A
Y
P
O

O
L

Linguistic Fundamentals for
Natural Language Processing
100 Essentials from Morphology and Syntax
Emily M. Bender, University of Washington
Many NLP tasks have at their core a subtask of extracting the dependencies—who did what to
whom—from natural language sentences. This task can be understood as the inverse of the problem
solved in different ways by diverse human languages, namely, how to indicate the relationship between
different parts of a sentence. Understanding how languages solve the problem can be extremely useful
in both feature design and error analysis in the application of machine learning to NLP. Likewise,
understanding cross-linguistic variation can be important for the design of MT systems and other
multilingual applications. The purpose of this book is to present in a succinct and accessible fashion
information about the morphological and syntactic structure of human languages that can be useful
in creating more linguistically sophisticated, more language-independent, and thus more successful
NLP systems.

Linguistic Fundamentals
for Natural Language
Processing
100 Essentials from
Morphology and Syntax

Emily M. Bender

Morgan Claypool Publishers&
SYNTHESIS LECTURES ON
HUMAN LANGUAGE TECHNOLOGIES

w w w . m o r g a n c l a y p o o l . c o m

Series Editor: Graeme Hirst, University of Toronto
CM& Morgan Claypool Publishers&

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com

SYNTHESIS LECTURES ON
HUMAN LANGUAGE TECHNOLOGIES

Graeme Hirst, Series Editor

ISBN: 978-1-62705-011-1

9 781627 050111

90000

Series ISSN: 1947-4040 BENDER
LINGUISTIC FUNDAM

ENTALS FOR NATURAL LANGUAGE PROCESSING
M

O
R
G
A
N

&
C
L
A
Y
P
O

O
L

Linguistic Fundamentals for
Natural Language Processing
100 Essentials from Morphology and Syntax
Emily M. Bender, University of Washington
Many NLP tasks have at their core a subtask of extracting the dependencies—who did what to
whom—from natural language sentences. This task can be understood as the inverse of the problem
solved in different ways by diverse human languages, namely, how to indicate the relationship between
different parts of a sentence. Understanding how languages solve the problem can be extremely useful
in both feature design and error analysis in the application of machine learning to NLP. Likewise,
understanding cross-linguistic variation can be important for the design of MT systems and other
multilingual applications. The purpose of this book is to present in a succinct and accessible fashion
information about the morphological and syntactic structure of human languages that can be useful
in creating more linguistically sophisticated, more language-independent, and thus more successful
NLP systems.

Linguistic Fundamentals
for Natural Language
Processing
100 Essentials from
Morphology and Syntax

Emily M. Bender

Morgan Claypool Publishers&
SYNTHESIS LECTURES ON
HUMAN LANGUAGE TECHNOLOGIES

w w w . m o r g a n c l a y p o o l . c o m

Series Editor: Graeme Hirst, University of Toronto
CM& Morgan Claypool Publishers&

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com

SYNTHESIS LECTURES ON
HUMAN LANGUAGE TECHNOLOGIES

Graeme Hirst, Series Editor

ISBN: 978-1-62705-011-1

9 781627 050111

90000

Series ISSN: 1947-4040 BENDER
LINGUISTIC FUNDAM

ENTALS FOR NATURAL LANGUAGE PROCESSING
M

O
R
G
A
N

&
C
L
A
Y
P
O

O
L

Linguistic Fundamentals for
Natural Language Processing
100 Essentials from Morphology and Syntax
Emily M. Bender, University of Washington
Many NLP tasks have at their core a subtask of extracting the dependencies—who did what to
whom—from natural language sentences. This task can be understood as the inverse of the problem
solved in different ways by diverse human languages, namely, how to indicate the relationship between
different parts of a sentence. Understanding how languages solve the problem can be extremely useful
in both feature design and error analysis in the application of machine learning to NLP. Likewise,
understanding cross-linguistic variation can be important for the design of MT systems and other
multilingual applications. The purpose of this book is to present in a succinct and accessible fashion
information about the morphological and syntactic structure of human languages that can be useful
in creating more linguistically sophisticated, more language-independent, and thus more successful
NLP systems.

Linguistic Fundamentals
for Natural Language
Processing
100 Essentials from
Morphology and Syntax

Emily M. Bender

https://tinyurl.com/linguistic-fundamentals
https://tinyurl.com/linguistic-fundamentals

What is syntax?
• A set of constraints on the possible sentences in the

language
– *A set of constraint on the possible sentence.
– *Dipanjan had [a] question.
– *You are on class.

• At a coarse level, we can divide all possible sequences of
words into two groups: valid and invalid (or grammatical
and ungrammatical)

29

POS Examples
• No general agreement about the exact set of parts of

speech
• One set of examples from the Penn Treebank

30

POS Examples
• No general agreement about the exact set of parts of

speech
• One set of examples from the Penn Treebank

– nouns: NN, NNS, NNP, NNPS

30

POS Examples
• No general agreement about the exact set of parts of

speech
• One set of examples from the Penn Treebank

– nouns: NN, NNS, NNP, NNPS
– adverbs: RB, RBR, RBS, RP

30

POS Examples
• No general agreement about the exact set of parts of

speech
• One set of examples from the Penn Treebank

– nouns: NN, NNS, NNP, NNPS
– adverbs: RB, RBR, RBS, RP
– verbs: VB, VBD, VBG, VBN, VBP, VBZ

30

POS Examples
• No general agreement about the exact set of parts of

speech
• One set of examples from the Penn Treebank

– nouns: NN, NNS, NNP, NNPS
– adverbs: RB, RBR, RBS, RP
– verbs: VB, VBD, VBG, VBN, VBP, VBZ
– (Here, different tags are used to capture the small bit of

morphology present in English)

30

Parts of Speech (POS)
• Three definitions of noun

31

Grammar school  
(“metaphysical”) 
a person, place,
thing, or idea

Parts of Speech (POS)
• Three definitions of noun

31

Grammar school  
(“metaphysical”) 
a person, place,
thing, or idea

Distributional  
 
the set of words
that have the
same distribution
as other nouns

{I,you,he} saw the
{bird,cat,dog}.

Parts of Speech (POS)
• Three definitions of noun

31

Grammar school  
(“metaphysical”) 
a person, place,
thing, or idea

Functional  
 
the set of words
that serve as
arguments to
verbs

verb

noun adverb

adjective

Distributional  
 
the set of words
that have the
same distribution
as other nouns

{I,you,he} saw the
{bird,cat,dog}.

Phrases and Constituents
• Longer sequences of words can perform the same

function as individual parts of speech:
– I saw [aDT kidN]NP

– I saw [a kid playing basketball]NP

– I saw [a kid playing basketball alone on the court]NP

• This gives rise to the idea of a phrasal constituent, which
functions as a unit in relation to the rest of the sentence

32

Constituent tests
• How do you know if a phrase functions as a constituent?
• A few tests

– Coordination
∎ Kim [read a book], [gave it to Sandy], and [left].

– Substitution with a word
∎ Kim read [a very interesting book about grammar].
∎ Kim read [it].

– See Bender #51

33

Constituent structure
• The head often constrains the internal structure of a constituent
• Examples

– verb
∎ [Kim]ARGUMENT is [ready]ADJUNCT.

– adjective
∎ Kim is [readyADJ [to make a pizza]V].
∎ * Kim is [tiredADJ [to make a pizza]V].

– noun
∎ [The [red]ADJ ball]
∎ * [The [red]ADJ ball [the stick]N]
∎ [The [red]ADJ ball [on top of the stick]PP]

34

More examples
– Kim planned [to give Sandy books].
– * Kim planned [to give Sandy].
– Kim planned [to give books].
– * Kim planned [to see Sandy books].
– Kim [would [give Sandy books]].
– Pat [helped [Kim give Sandy books]].
– * [[Give Sandy books] [surprised Kim]].

35

Human judgments
• How do we know what’s in and out? We simply ask

humans
• But how do humans know? This is the tie-in to formal

language theory

36

Context Free Grammar
• A finite set of rules licensing a

(possibly infinite) number of strings

37

finite state machine

context-free grammar

context-sensitive
grammar

Turing machine

Chomsky formal
language hierarchy
refresher

Context Free Grammar
• A finite set of rules licensing a

(possibly infinite) number of strings
• e.g., some rules

37

finite state machine

context-free grammar

context-sensitive
grammar

Turing machine

Chomsky formal
language hierarchy
refresher

Context Free Grammar
• A finite set of rules licensing a

(possibly infinite) number of strings
• e.g., some rules

– [sentence] → [subject] [predicate]

37

finite state machine

context-free grammar

context-sensitive
grammar

Turing machine

Chomsky formal
language hierarchy
refresher

Context Free Grammar
• A finite set of rules licensing a

(possibly infinite) number of strings
• e.g., some rules

– [sentence] → [subject] [predicate]
– [subject] → [noun phrase]

37

finite state machine

context-free grammar

context-sensitive
grammar

Turing machine

Chomsky formal
language hierarchy
refresher

Context Free Grammar
• A finite set of rules licensing a

(possibly infinite) number of strings
• e.g., some rules

– [sentence] → [subject] [predicate]
– [subject] → [noun phrase]
– [noun phrase] → [determiner]?

[adjective]* [noun]

37

finite state machine

context-free grammar

context-sensitive
grammar

Turing machine

Chomsky formal
language hierarchy
refresher

Context Free Grammar
• A finite set of rules licensing a

(possibly infinite) number of strings
• e.g., some rules

– [sentence] → [subject] [predicate]
– [subject] → [noun phrase]
– [noun phrase] → [determiner]?

[adjective]* [noun]
– [predicate] → [verb phrase] [adjunct]

37

finite state machine

context-free grammar

context-sensitive
grammar

Turing machine

Chomsky formal
language hierarchy
refresher

Context Free Grammar
• A finite set of rules licensing a

(possibly infinite) number of strings
• e.g., some rules

– [sentence] → [subject] [predicate]
– [subject] → [noun phrase]
– [noun phrase] → [determiner]?

[adjective]* [noun]
– [predicate] → [verb phrase] [adjunct]

• Rules are phrasal or terminal

37

finite state machine

context-free grammar

context-sensitive
grammar

Turing machine

Chomsky formal
language hierarchy
refresher

Context Free Grammar
• A finite set of rules licensing a

(possibly infinite) number of strings
• e.g., some rules

– [sentence] → [subject] [predicate]
– [subject] → [noun phrase]
– [noun phrase] → [determiner]?

[adjective]* [noun]
– [predicate] → [verb phrase] [adjunct]

• Rules are phrasal or terminal
– Phrasal rules form constituents in

a tree

37

finite state machine

context-free grammar

context-sensitive
grammar

Turing machine

Chomsky formal
language hierarchy
refresher

Context Free Grammar
• A finite set of rules licensing a

(possibly infinite) number of strings
• e.g., some rules

– [sentence] → [subject] [predicate]
– [subject] → [noun phrase]
– [noun phrase] → [determiner]?

[adjective]* [noun]
– [predicate] → [verb phrase] [adjunct]

• Rules are phrasal or terminal
– Phrasal rules form constituents in

a tree
– Terminal rules are parts of speech

and produce words

37

finite state machine

context-free grammar

context-sensitive
grammar

Turing machine

Chomsky formal
language hierarchy
refresher

Example

38

Example

38

S → NP VP . S → NP VP

Example

38

S → NP VP . S → NP VP
S → [JJ NNS] VP . VP → JJ NNS

Example

38

S → NP VP . S → NP VP
S → [JJ NNS] VP . VP → JJ NNS
S → [Human] NNS VP . JJ → Human

Example

38

S → NP VP . S → NP VP
S → [JJ NNS] VP . VP → JJ NNS
S → [Human] NNS VP . JJ → Human
S → Human [languages] VP . NNS → languages

Example

38

S → NP VP . S → NP VP
S → [JJ NNS] VP . VP → JJ NNS
S → [Human] NNS VP . JJ → Human
S → Human [languages] VP . NNS → languages
S → Human languages [VBP ADJP] . VP → VBP ADJP

Example

38

S → NP VP . S → NP VP
S → [JJ NNS] VP . VP → JJ NNS
S → [Human] NNS VP . JJ → Human
S → Human [languages] VP . NNS → languages
S → Human languages [VBP ADJP] . VP → VBP ADJP
S → Human languages [are] ADJP . VBP → are

Example

38

S → NP VP . S → NP VP
S → [JJ NNS] VP . VP → JJ NNS
S → [Human] NNS VP . JJ → Human
S → Human [languages] VP . NNS → languages
S → Human languages [VBP ADJP] . VP → VBP ADJP
S → Human languages [are] ADJP . VBP → are
S → Human languages are [JJ SBAR] . ADJP → JJ SBAR

Example

38

S → NP VP . S → NP VP
S → [JJ NNS] VP . VP → JJ NNS
S → [Human] NNS VP . JJ → Human
S → Human [languages] VP . NNS → languages
S → Human languages [VBP ADJP] . VP → VBP ADJP
S → Human languages [are] ADJP . VBP → are
S → Human languages are [JJ SBAR] . ADJP → JJ SBAR
S → Human languages are [hard] SBAR . JJ → hard

Example

38

S → NP VP . S → NP VP
S → [JJ NNS] VP . VP → JJ NNS
S → [Human] NNS VP . JJ → Human
S → Human [languages] VP . NNS → languages
S → Human languages [VBP ADJP] . VP → VBP ADJP
S → Human languages [are] ADJP . VBP → are
S → Human languages are [JJ SBAR] . ADJP → JJ SBAR
S → Human languages are [hard] SBAR . JJ → hard
S → Human languages are hard [VP] . SBAR → S, S → VP

Example

38

S → NP VP . S → NP VP
S → [JJ NNS] VP . VP → JJ NNS
S → [Human] NNS VP . JJ → Human
S → Human [languages] VP . NNS → languages
S → Human languages [VBP ADJP] . VP → VBP ADJP
S → Human languages [are] ADJP . VBP → are
S → Human languages are [JJ SBAR] . ADJP → JJ SBAR
S → Human languages are [hard] SBAR . JJ → hard
S → Human languages are hard [VP] . SBAR → S, S → VP
S → Human languages are hard [TO VP] . VP → TO VP

Example

38

S → NP VP . S → NP VP
S → [JJ NNS] VP . VP → JJ NNS
S → [Human] NNS VP . JJ → Human
S → Human [languages] VP . NNS → languages
S → Human languages [VBP ADJP] . VP → VBP ADJP
S → Human languages [are] ADJP . VBP → are
S → Human languages are [JJ SBAR] . ADJP → JJ SBAR
S → Human languages are [hard] SBAR . JJ → hard
S → Human languages are hard [VP] . SBAR → S, S → VP
S → Human languages are hard [TO VP] . VP → TO VP
S → Human languages are hard [to] VP . TO → to

Example

38

S → NP VP . S → NP VP
S → [JJ NNS] VP . VP → JJ NNS
S → [Human] NNS VP . JJ → Human
S → Human [languages] VP . NNS → languages
S → Human languages [VBP ADJP] . VP → VBP ADJP
S → Human languages [are] ADJP . VBP → are
S → Human languages are [JJ SBAR] . ADJP → JJ SBAR
S → Human languages are [hard] SBAR . JJ → hard
S → Human languages are hard [VP] . SBAR → S, S → VP
S → Human languages are hard [TO VP] . VP → TO VP
S → Human languages are hard [to] VP . TO → to
S → Human languages are hard to [VB] . VP → VB

Example

38

S → NP VP . S → NP VP
S → [JJ NNS] VP . VP → JJ NNS
S → [Human] NNS VP . JJ → Human
S → Human [languages] VP . NNS → languages
S → Human languages [VBP ADJP] . VP → VBP ADJP
S → Human languages [are] ADJP . VBP → are
S → Human languages are [JJ SBAR] . ADJP → JJ SBAR
S → Human languages are [hard] SBAR . JJ → hard
S → Human languages are hard [VP] . SBAR → S, S → VP
S → Human languages are hard [TO VP] . VP → TO VP
S → Human languages are hard [to] VP . TO → to
S → Human languages are hard to [VB] . VP → VB
S → Human languages are hard to [parse] . VB → parse

Example

38

S → NP VP . S → NP VP
S → [JJ NNS] VP . VP → JJ NNS
S → [Human] NNS VP . JJ → Human
S → Human [languages] VP . NNS → languages
S → Human languages [VBP ADJP] . VP → VBP ADJP
S → Human languages [are] ADJP . VBP → are
S → Human languages are [JJ SBAR] . ADJP → JJ SBAR
S → Human languages are [hard] SBAR . JJ → hard
S → Human languages are hard [VP] . SBAR → S, S → VP
S → Human languages are hard [TO VP] . VP → TO VP
S → Human languages are hard [to] VP . TO → to
S → Human languages are hard to [VB] . VP → VB
S → Human languages are hard to [parse] . VB → parse
S → Human languages are hard to parse . ■

Example

38

S → NP VP . S → NP VP
S → [JJ NNS] VP . VP → JJ NNS
S → [Human] NNS VP . JJ → Human
S → Human [languages] VP . NNS → languages
S → Human languages [VBP ADJP] . VP → VBP ADJP
S → Human languages [are] ADJP . VBP → are
S → Human languages are [JJ SBAR] . ADJP → JJ SBAR
S → Human languages are [hard] SBAR . JJ → hard
S → Human languages are hard [VP] . SBAR → S, S → VP
S → Human languages are hard [TO VP] . VP → TO VP
S → Human languages are hard [to] VP . TO → to
S → Human languages are hard to [VB] . VP → VB
S → Human languages are hard to [parse] . VB → parse
S → Human languages are hard to parse . ■

Treebanks
• Collections of natural text that are annotated according to

a particular syntactic theory
– Usually created by linguistic experts
– Ideally as large as possible
– Theories are usually coarsely divided into constituent/

phrase or dependency structure

39

Penn Treebank (1993)

40

ht
tp

s:
//c

at
al

og
.ld

c.
up

en
n.

ed
u/

LD
C

99
T4

2

The Penn Treebank
• Syntactic annotation of a million words of the 1989 Wall

Street Journal, plus other corpora (released in 1993)
– (Trivia: People often discuss “The Penn Treebank” when

the mean the WSJ portion of it)

41

The Penn Treebank
• Syntactic annotation of a million words of the 1989 Wall

Street Journal, plus other corpora (released in 1993)
– (Trivia: People often discuss “The Penn Treebank” when

the mean the WSJ portion of it)
• Contains 74 total tags: 36 parts of speech, 7 punctuation

tags, and 31 phrasal constituent tags, plus some relation
markings

41

The Penn Treebank
• Syntactic annotation of a million words of the 1989 Wall

Street Journal, plus other corpora (released in 1993)
– (Trivia: People often discuss “The Penn Treebank” when

the mean the WSJ portion of it)
• Contains 74 total tags: 36 parts of speech, 7 punctuation

tags, and 31 phrasal constituent tags, plus some relation
markings

• Was the foundation for an entire field of research and
applications for over twenty years

41

((S
 (NP-SBJ
 (NP (NNP Pierre) (NNP Vinken))
 (, ,)
 (ADJP
 (NP (CD 61) (NNS years))
 (JJ old))
 (, ,))
 (VP (MD will)
 (VP (VB join)
 (NP (DT the) (NN board))
 (PP-CLR (IN as)
 (NP (DT a) (JJ nonexecutive) (NN director)))
 (NP-TMP (NNP Nov.) (CD 29))))
 (. .)))

ht
tp

s:
//c

om
m

on
s.

w
ik

im
ed

ia
.o

rg
/w

ik
i/F

ile
:P

ie
rre

Vi
nk

en
.jp

g

Pierre Vinken, 61 years old, will join the board
as a nonexecutive director Nov. 29.

((S
 (NP-SBJ
 (NP (NNP Pierre) (NNP Vinken))
 (, ,)
 (ADJP
 (NP (CD 61) (NNS years))
 (JJ old))
 (, ,))
 (VP (MD will)
 (VP (VB join)
 (NP (DT the) (NN board))
 (PP-CLR (IN as)
 (NP (DT a) (JJ nonexecutive) (NN director)))
 (NP-TMP (NNP Nov.) (CD 29))))
 (. .)))

ht
tp

s:
//c

om
m

on
s.

w
ik

im
ed

ia
.o

rg
/w

ik
i/F

ile
:P

ie
rre

Vi
nk

en
.jp

g

Pierre Vinken, 61 years old, will join the board
as a nonexecutive director Nov. 29.

x 49,208

Summary
• Formal language theory is a theory that does the

following:
– provides a compact representation of a language
– provides an account for how strings within a language

are generated
• It’s very useful for describing many simple languages
• It can also be applied to natural language

43

Outline

44

formal
language

theory
parsingnatural

language

Where we are
• We discussed formal language theory
• We showed how it might apply to human language
• But how do we get a computer to use it?

– Sentences (or other strings we wish to parse) are
observed; the structure is hidden

– We assume these were generated by a model
– We need

∎ An algorithm for finding the sequence of actions
under that model, most likely to have produced it

∎ A way to learn that model

45

Where do grammars come from?

46

Where do grammars come from?
• Treebanks!
• Given a treebank, and a formalism, we can learn statistics

by counting over the annotated instances

47https://www.shutterstock.com/image-vector/stork-carrying-baby-boy-133823486
I stole this joke from Chris Callison-Burch

Probabilities
• For example, a context-free grammar
• We can get probabilities by reading all instances from a Treebank 
 

• e.g.,
– S → NP , NP VP . [0.002]
– NP → NNP NNP [0.037]
– , → , [0.999]
– NP → * [X]
– VP → VB NP [0.057]
– NP → PRP$ NN [0.008]
– . → . [0.987]

P(A → B C) = ∑
A′ ∈N

P(A)
P(A′)

48

← a CFG rule

← all CFG rules with the same lefthand side

Parsing
• If the grammar has certain properties (Type 2 or 3), we

can efficiently answer the first question (find the hidden
structure) with a parser
– Q1: is the sentence in the language of the parser?
– Q2: What is the structure above that sentence?

49

Algorithms
• The CKY algorithm for parsing with constituency

grammars

50

Chart parsing for constituency grammars

• Maintains a chart of nonterminals spanning words, e.g.,
– NP over words 1..4 and 2..5
– VP over words 4..6 and 4..8
– etc

• Build this chart from the bottom upward: the opposite
direction from generation

51

Chart parsing for constituency grammars

520 1 2 3 4 5
Time flies like an arrow

0NN1 1NN2,1VB2 2VB3,2IN3 3DT4 4NN5

3NP50NP1

2PP5, 2VP50NP2

1VP5

0S5

CKY algorithm
• How do we produce this chart? Cocke-Younger-Kasami (CYK/

CKY)
• Basic idea is to apply rules in a bottom-up fashion, applying all

rules, and (recursively) building larger constituents from
smaller ones

• Input: sentence of length N
for width in 2..N

for begin i in 1..{N - width}
j = i + width

for split k in {i + 1}..{j - 1}
for all rules A → B C

create iAj if iBk and kCj

53

CKY algorithm

540 1 2 3 4 5
Time flies like an arrow

CKY algorithm

540 1 2 3 4 5
Time flies like an arrow

NN NN,VB VB,IN DT NN

CKY algorithm

540 1 2 3 4 5
Time flies like an arrow

NN NN,VB VB,IN DT NN
NP→DT NNNP→NN

CKY algorithm

540 1 2 3 4 5
Time flies like an arrow

NN NN,VB VB,IN DT NN
NP→DT NNNP→NN

PP→2IN3 3NP5NP→NN NN

CKY algorithm

540 1 2 3 4 5
Time flies like an arrow

NN NN,VB VB,IN DT NN
NP→DT NNNP→NN

PP→2IN3 3NP5NP→NN NN
VP→2VB3 3NP5

CKY algorithm

540 1 2 3 4 5
Time flies like an arrow

NN NN,VB VB,IN DT NN
NP→DT NNNP→NN

PP→2IN3 3NP5NP→NN NN

VP→VB PP

VP→2VB3 3NP5

CKY algorithm

540 1 2 3 4 5
Time flies like an arrow

NN NN,VB VB,IN DT NN
NP→DT NNNP→NN

PP→2IN3 3NP5NP→NN NN

VP→VB PP

VP→2VB3 3NP5

S → 0NP1 1VP5

CKY algorithm

540 1 2 3 4 5
Time flies like an arrow

NN NN,VB VB,IN DT NN
NP→DT NNNP→NN

PP→2IN3 3NP5NP→NN NN

VP→VB PP

VP→2VB3 3NP5

S → 0NP1 1VP5

S → 0NP2 2VP5

CKY algorithm
• Parsing questions:

– Q1: is a given sentence in the language of the parser?
– Q2: What is the structure above that sentence?

• Termination: is there a chart entry at 0SN?
– ✓ string is in the language (Q1)
– Structures can be obtained by following backpointers in

dynamic programming chart (not covered today)
• Other technical details not covered today:

– The probability of each parse is the product of the rule
probabilities

– Ambiguities are resolved with these scores
55

• Demos:
– Berkeley Neural Parser: https://parser.kitaev.io
– Spacy dependency parser: https://explosion.ai/demos/

displacy

56

https://parser.kitaev.io
https://explosion.ai/demos/displacy
https://explosion.ai/demos/displacy

Summary

57

formal
language

theory
parsingnatural

language

Outline

provides a
framework for
reasoning
about
languages of
all kinds

a real-world (if
messy)
application
area for
formal
language
theory

a means of
making text
useable
under formal
language
theory

