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S o g o r g e o u s w a s t h e 
spectacle on the May morning 
of 1910 when nine kings rode 
in the funeral of Edward VII of 
England that the crowd, 
waiting in hushed and black-
clad awe, could not keep 
back gasps of admiration.

Barbara W. Tuchman, The Guns of August
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Other examples
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for i in range(args.N): 
print(i)

i in: i for range(print)

GOOD BAD

<html> 
  <p> 
    Lorem ipsum 
  </p> 
</html> 

ipsum </p></html> 
  <h> 

Lorem 
  <ptml>

python 
program

HTML

URLshttp://google.com gsd@ht//:ww



What are the abstractions and tools 
that underlie all of these examples?



Today we will cover
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formal 
language 

theory
natural 

language parsing

abstractions 
for reasoning 
about 
structure

applying 
structure to 
natural 
phenomena

making them 
usable by a 
computer

math linguistics engineering



Goals for today
• After today, you should be able to

– describe syntax both mathematically and linguistically
– enumerate the formal language (Chomsky) hierarchy
– provide a description of constituent grammars
– sketch the algorithm for CKY parsing

7



Outline
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formal 
language 

theory
natural 

language parsing



Formal Language Theory
• Generalization: define a language to be a set of strings 

under some alphabet, 
– e.g., the set of valid English sentences (where the 

“alphabet” is English words), or the set of valid Python 
programs

Σ

9



Formal Language Theory
• Generalization: define a language to be a set of strings 

under some alphabet, 
– e.g., the set of valid English sentences (where the 

“alphabet” is English words), or the set of valid Python 
programs

Σ

• Formal Language Theory provides a common framework 
for studying properties of these languages, e.g.,
– Is this file a valid C++ program? A valid Czech 

sentence?
– What is the structure? <=> How do I find its meaning?
– How hard / time-consuming is it to answer these 

questions?
9



Languages as sets
•

• What do you think these languages describe (in words?) 
 

 
 

Σ = {0,1,2,3,4,5,6,7,8,9}

ℒ1 = {0, 1, 2, 3, 4, 5, …}
ℒ2 = {−12.4, 0, 142, 142.1, 142.01, 142.001, …}
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Definitions
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formal 
name think… description repr

letter token
the fundamental unit under 

consideration (e.g., a word, or a 
UTF-8-encoded  letter)

alphabet vocabulary A set of tokens

word “string” a sequence of zero or more tokens in 
the vocabulary

language language a set of strings

a, b, …

Σ

ℒ

α, β, …



Some notes
•  is the set of all strings in a vocabulary, 
• One special string is the empty string, {} or 
• A language  can be very large—even infinite!

– In fact, most languages probably are
– List a few

Σ* Σ
ϵ

ℒ

12



Generative descriptions of lang.
• A definition of languages as sets is not very useful

– Why not?
• A better approach: 

– Develop a process that can describe how strings in a 
language

– New membership criteria:
∎ IN: can be generated by this process
∎ OUT: cannot be generated by this process

•
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Generative examples
•

• You probably know one generative process already: 
regular expressions

• What do these languages describe (in words?) 
 

 

Σ = {0,1,2,3,4,5,6,7,8,9}

ℒ1 = Σ*
ℒ2 = 0 ∣ [1 − 9][0 − 9] *

14



Regular language examples
• How can we write the following languages?

– All floating point numbers
– Email addresses

• These are much more compact representations compared 
to their set notations!

15



Regular languages with rules
• The “regular expression” syntax is a shortcut 

representation
• We can describe the generative process more formally 

using a set of rules that are recursively applied  
 
 

• Rules have two types of symbols:
– terminal symbols (lowercase letter) are normal 

vocabulary items
– nonterminal symbols (capital letters) are recursively 

replaced until there are no more of them
16

A → Aa
A → a



Previous examples as rules
• Σ = {0,1,2,3,4,5,6,7,8,9}
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Previous examples as rules
• Σ = {0,1,2,3,4,5,6,7,8,9}
•  

S → A 
A → 0A 
A → 1A 
A → 2A 
… 
A → 9A

ℒ1 = Σ*
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Previous examples as rules
• Σ = {0,1,2,3,4,5,6,7,8,9}
•  

S → A 
A → 0A 
A → 1A 
A → 2A 
… 
A → 9A

ℒ1 = Σ*

• A → ϵ
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Previous examples as rules
• Σ = {0,1,2,3,4,5,6,7,8,9}
• ℒ2 = 0 ∣ [1 − 9][0 − 9] *
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Previous examples as rules
• Σ = {0,1,2,3,4,5,6,7,8,9}
• ℒ2 = 0 ∣ [1 − 9][0 − 9] *
• S→A 

A→0  
A→1B 
A→2B 
… 
A→9B 
B→0B 
B→1B 
… 
B→9B 
B→ϵ

18



Formal definition of a language
• Definitions: consider the set , where

–  is the vocabulary which is a finite set of terminal 
symbols

–  is a finite set of nonterminals symbols
–  is a special nonterminal called the start symbol
–  are strings of zero or more terminal and 

nonterminal symbols
–  is a set of rules of the form 

(Σ, N, S ∈ N, R)
Σ

N
S ∈ N
α, β, and γ

R αNβ → γ

19



Regular languages
• Definitions: consider the set , where

–  is the vocabulary which is a finite set of terminal symbols
–  is a finite set of nonterminals symbols
–  is a special nonterminal called the start symbol
–  are strings of zero or more terminal and nonterminal symbols
–  is a set of rules of the form 

(Σ, N, S ∈ N, R)
Σ
N
S ∈ N
α, β, and γ
R αNβ → γ

20

Type Rules Name Recognized by

3 Regular Regular 
expressionsA → aB

• All the languages we created earlier (for example, the set 
of email addresses) can be described with such rules



Context-free languages
• Definitions: consider the set , where

–  is the vocabulary which is a finite set of terminal symbols
–  is a finite set of nonterminals symbols
–  is a special nonterminal called the start symbol
–  are strings of zero or more terminal and nonterminal symbols
–  is a set of rules of the form 

(Σ, N, S ∈ N, R)
Σ
N
S ∈ N
α, β, and γ
R αNβ → γ

21

Type Rules Name Recognized by

2 Context-free Pushdown 
automata

• This change might seem small, but it fundamentally alters 
the kinds of languages that can be generated

A → α



Context-free and not regular
• Σ = {a, b, c, …, z}
• Create a context-free language for , the set of 

palindromes
ℒ
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Context-free and not regular
• Σ = {a, b, c, …, z}
• Create a context-free language for , the set of 

palindromes
ℒ

• S→A 
A→aAa  
A→bAb  
… 
A→zAz 
A→ϵ
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Context-free and not regular
• Σ = {a, b, c, …, z}
• Create a context-free language for , the set of 

palindromes
ℒ

• S→A 
A→aAa  
A→bAb  
… 
A→zAz 
A→ϵ

• Can you do this with the regular language constraint on 
rules?

22



The Chomsky Hierarchy
• Named after Noam Chomsky, the MIT linguist
• Different constraints on the rules lead to more powerful 

sets of languages that can be described
• More powerful languages are harder (meaning, more 

compute-intensive) to recognize

23



The Chomsky Hierarchy
• Definitions: consider the set , where

–  is the vocabulary which is a finite set of terminal symbols
–  is a finite set of nonterminals symbols
–  is a special nonterminal called the start symbol
–  are strings of zero or more terminal and nonterminal symbols
–  is a set of rules of the form 

(Σ, N, S ∈ N, R)
Σ
N
S ∈ N
α, β, and γ
R αNβ → γ

24

Type Rules Name Recognized by Complexity

3 Regular Regular 
expressions

2 Context-free Pushdown 
automata

1 Context-
sensitive

Linear-bounded 
Turing machine

0 Recursively 
enumerable

Turing 
Machines undecidable

A → aB

A → α

A  → α β αγβ

A  → α β γ

𝒪(n)

𝒪(n3)

𝒪(2n)



Summary
• This view of languages (not sets, but “capturing” 

generative processes) is very productive
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– They either compile or don’t compile
– Their structure determines their interpretation

25



Summary
• This view of languages (not sets, but “capturing” 

generative processes) is very productive
• We can generalize this discussion to make a connection 

between natural and other kinds of languages
• Consider, for example, computer programs

– They either compile or don’t compile
– Their structure determines their interpretation

• What is the structure?

25



Outline
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Linguistic fields of study
• Phonetics: sounds
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Linguistic fields of study
• Phonetics: sounds
• Phonology: sound systems
• Morphology: internal word structure
• Syntax: external word structure (sentences)
• Semantics: sentence meaning
• Pragmatics: contextualized meaning and communicative 

goals

27



Today’s focus
• Excellent book
• Organized into 100 mini-

lectures
• PDF available for free via 

JHU library (along with 
tens of others in the 
series)

• https://tinyurl.com/
linguistic-fundamentals

28
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What is syntax?
• A set of constraints on the possible sentences in the 

language
– *A set of constraint on the possible sentence.
– *Dipanjan had [a] question.
– *You are on class.

• At a coarse level, we can divide all possible sequences of 
words into two groups: valid and invalid (or grammatical 
and ungrammatical)

29



POS Examples
• No general agreement about the exact set of parts of 

speech
• One set of examples from the Penn Treebank
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POS Examples
• No general agreement about the exact set of parts of 
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• One set of examples from the Penn Treebank

– nouns: NN, NNS, NNP, NNPS
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POS Examples
• No general agreement about the exact set of parts of 

speech
• One set of examples from the Penn Treebank

– nouns: NN, NNS, NNP, NNPS
– adverbs: RB, RBR, RBS, RP
– verbs: VB, VBD, VBG, VBN, VBP, VBZ
– (Here, different tags are used to capture the small bit of 

morphology present in English)

30



Parts of Speech (POS)
• Three definitions of noun

31

Grammar school  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thing, or idea
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Parts of Speech (POS)
• Three definitions of noun

31

Grammar school  
(“metaphysical”) 
a person, place, 
thing, or idea

Functional  
 
the set of words 
that serve as 
arguments to 
verbs

verb

noun adverb

adjective

Distributional  
 
the set of words 
that have the 
same distribution 
as other nouns

{I,you,he} saw the 
{bird,cat,dog}.



Phrases and Constituents
• Longer sequences of words can perform the same 

function as individual parts of speech:
– I saw [aDT kidN]NP

– I saw [a kid playing basketball]NP

– I saw [a kid playing basketball alone on the court]NP

• This gives rise to the idea of a phrasal constituent, which 
functions as a unit in relation to the rest of the sentence

32



Constituent tests
• How do you know if a phrase functions as a constituent?
• A few tests

– Coordination
∎ Kim [read a book], [gave it to Sandy], and [left].

– Substitution with a word
∎ Kim read [a very interesting book about grammar].
∎ Kim read [it].

– See Bender #51

33



Constituent structure
• The head often constrains the internal structure of a constituent 
• Examples

– verb
∎ [Kim]ARGUMENT is [ready]ADJUNCT.

– adjective
∎ Kim is [readyADJ [to make a pizza]V].
∎ * Kim is [tiredADJ [to make a pizza]V].

– noun
∎ [The [red]ADJ ball]
∎ * [The [red]ADJ ball [the stick]N]
∎ [The [red]ADJ ball [on top of the stick]PP]
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More examples
– Kim planned [to give Sandy books].
– * Kim planned [to give Sandy].
– Kim planned [to give books].
– * Kim planned [to see Sandy books].
– Kim [would [give Sandy books]].
– Pat [helped [Kim give Sandy books]].
– * [[Give Sandy books] [surprised Kim]].

35



Human judgments
• How do we know what’s in and out? We simply ask 

humans
• But how do humans know? This is the tie-in to formal 

language theory

36



Context Free Grammar
• A finite set of rules licensing a 

(possibly infinite) number of strings

37
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Context Free Grammar
• A finite set of rules licensing a 

(possibly infinite) number of strings
• e.g., some rules

– [sentence] → [subject] [predicate]
– [subject] → [noun phrase]
– [noun phrase] → [determiner]? 

[adjective]* [noun]
– [predicate] → [verb phrase] [adjunct]

• Rules are phrasal or terminal
– Phrasal rules form constituents in 

a tree
– Terminal rules are parts of speech 

and produce words
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context-free grammar

context-sensitive 
grammar

Turing machine

Chomsky formal 
language hierarchy
refresher
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Treebanks
• Collections of natural text that are annotated according to 

a particular syntactic theory
– Usually created by linguistic experts
– Ideally as large as possible
– Theories are usually coarsely divided into constituent/

phrase or dependency structure
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Penn Treebank (1993)
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The Penn Treebank
• Syntactic annotation of a million words of the 1989 Wall 

Street Journal, plus other corpora (released in 1993)
– (Trivia: People often discuss “The Penn Treebank” when 

the mean the WSJ portion of it)
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The Penn Treebank
• Syntactic annotation of a million words of the 1989 Wall 

Street Journal, plus other corpora (released in 1993)
– (Trivia: People often discuss “The Penn Treebank” when 

the mean the WSJ portion of it)
• Contains 74 total tags: 36 parts of speech, 7 punctuation 

tags, and 31 phrasal constituent tags, plus some relation 
markings

• Was the foundation for an entire field of research and 
applications for over twenty years
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Summary
• Formal language theory is a theory that does the 

following:
– provides a compact representation of a language
– provides an account for how strings within a language 

are generated
• It’s very useful for describing many simple languages
• It can also be applied to natural language
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Outline
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Where we are
• We discussed formal language theory
• We showed how it might apply to human language
• But how do we get a computer to use it?

– Sentences (or other strings we wish to parse) are 
observed; the structure is hidden

– We assume these were generated by a model
– We need

∎ An algorithm for finding the sequence of actions 
under that model, most likely to have produced it

∎ A way to learn that model 
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Where do grammars come from?
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Where do grammars come from?
• Treebanks!
• Given a treebank, and a formalism, we can learn statistics 

by counting over the annotated instances

47https://www.shutterstock.com/image-vector/stork-carrying-baby-boy-133823486
I stole this joke from Chris Callison-Burch



Probabilities
• For example, a context-free grammar
• We can get probabilities by reading all instances from a Treebank 
 

• e.g.,
– S → NP , NP VP . [0.002]
– NP → NNP NNP [0.037]
– , → , [0.999]
– NP → * [X]
– VP → VB NP [0.057]
– NP → PRP$ NN [0.008]
– . → . [0.987]

P(A → B C) = ∑
A′ ∈N

P(A)
P(A′ )
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← a CFG rule

← all CFG rules with the same lefthand side



Parsing
• If the grammar has certain properties (Type 2 or 3), we 

can efficiently answer the first question (find the hidden 
structure) with a parser
– Q1: is the sentence in the language of the parser?
– Q2: What is the structure above that sentence?
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Algorithms
• The CKY algorithm for parsing with constituency 

grammars
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Chart parsing for constituency grammars

• Maintains a chart of nonterminals spanning words, e.g.,
– NP over words 1..4 and 2..5
– VP over words 4..6 and 4..8
– etc

• Build this chart from the bottom upward: the opposite 
direction from generation
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Chart parsing for constituency grammars

520 1 2 3 4 5
Time flies like an arrow

0NN1 1NN2,1VB2 2VB3,2IN3 3DT4 4NN5

3NP50NP1

2PP5, 2VP50NP2

1VP5

0S5



CKY algorithm
• How do we produce this chart? Cocke-Younger-Kasami (CYK/

CKY)
• Basic idea is to apply rules in a bottom-up fashion, applying all 

rules, and (recursively) building larger constituents from 
smaller ones

• Input: sentence of length N
for width in 2..N

for begin i in 1..{N - width}
j = i + width

for split k in {i + 1}..{j - 1}
for all rules A → B C

create iAj if iBk and kCj
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CKY algorithm
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CKY algorithm
• Parsing questions:

– Q1: is a given sentence in the language of the parser?
– Q2: What is the structure above that sentence?

• Termination: is there a chart entry at 0SN?
– ✓ string is in the language (Q1)
– Structures can be obtained by following backpointers in 

dynamic programming chart (not covered today)
• Other technical details not covered today:

– The probability of each parse is the product of the rule 
probabilities

– Ambiguities are resolved with these scores
55



• Demos:
– Berkeley Neural Parser: https://parser.kitaev.io
– Spacy dependency parser: https://explosion.ai/demos/

displacy
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Summary
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