SYNTAX

Matt Post
IntroHLT class
5 September 2024

JOHNS HOPKINS

UNIVERSITY

S0 gorgeous was the
spectacle on the May morning
of 1910 when nine kings rode
in the funeral of Edward VIl of
England that the crowd,
waiting in hushed and black-
clad awe, could not keep
back gasps of admiration.

morning keep could awe, the
crowd, admiration. in hushed
and black-clad of funeral May
gorgeous of not on of rode
waiting the VII England 1910
back that spectacle the
Fdward the in gasps Kkings
was when nine of So

Other examples

GOOD

python
program

HTML

URLs

BA

O

What are the abstractions and tools
that undetrlie all of these examples?

Today we will cover

math linguistics engineering
formal
language el Vel parsing
theory language
abstract/on applying making them
for reasoning structure to
usable by a
about natural
computer

structure phenomena

Goals for today

- After today, you should be able to
- describe syntax both mathematically and linguistically
- enumerate the formal language (Chomsky) hierarchy
- provide a description of constituent grammars
- sketch the algorithm for CKY parsing

Outline

formal
natural

language

language
theory

parsing

Formal Language Theory

- Generalization: define a language to be a set of strings
under some alphabet, 2

- e.g., the set of valid English sentences (where the
“alphabet” is English words), or the set of valid Python
programs

Formal Language Theory

- Generalization: define a language to be a set of strings
under some alphabet, 2

- e.g., the set of valid English sentences (where the
“alphabet” is English words), or the set of valid Python
programs

- Formal Language Theory provides a common framework
for studying properties of these languages, e.g.,

- Is this file a valid C++ program? A valid Czech
sentence?
- What is the structure? <=> How do | find its meaning?

- How hard / time-consuming is it to answer these
guestions?

Languages as sets

. 2=1{0,1,2,3,4,5,6,7,8,9}

- What do you think these languages describe (in words?)

=1{0,1,2,3,4,5, ...}
L, ={—12.4,0, 142, 142.1, 142.01, 142.001, ...}

Definitions

formal
name

think... description

the fundamental unit under
letter token consideration (e.g., a word, or a da, ba . e
UTF-8-encoded letter)

alphabet vocabulary A set of tokens 2

a sequence of zero or more tokens in o ,B
, , o o o

word string the vocabulary

language language a set of strings A

Some notes

. 2 * is the set of all strings in a vocabulary, 2

- One special string is the empty string, {} or €

. Alanguage Z can be very large—even infinite!
- In fact, most languages probably are
- List a few

Generative descriptions of lang.

- A definition of languages as sets is not very useful
- Why not?
- A better approach:

- Develop a process that can describe how strings in a
language

- New membership criteria:
* IN: can be generated by this process
* OUT: cannot be generated by this process

Generative examples

. 2=1{0,1,2,3,4,5,6,7,8,9}

* You probably know one generative process already:
regular expressions

- What do these languages describe (in words?)

31=Z*
Z,=01[1-9][0-9]*

Regular language examples

- How can we write the following languages?
- All floating point numbers

— Email addresses

- These are much more compact representations compared
to their set notations!

Reqgular languages with rules

- The “regular expression” syntax is a shortcut
representation

- We can describe the generative process more formally
using a set of rules that are recursively applied

A — Aa
A—a
- Rules have two types of symbols:

- terminal symbols (lowercase letter) are normal
vocabulary items

- nonterminal symbols (capital letters) are recursively
replaced until there are no more of them

Previous examples as rules

. 2=1{0,1,2,3,4,5,6,7,8,9}

Previous examples as rules

. ¥ =1{0,123.45,6,7.8.9)
. P =T

S—A

A — 0OA

A— 1A

A — 2A

A - 9A

Previous examples as rules

. ¥ =1{0,123.45,6,7.8.9)
. P =T

S—A

A — 0OA

A— 1A

A — 2A

A — 9A
- A—¢€

Previous examples as rules

. 2=10,1,2,3,4,5,6,7,8,9}
. L, =0][1-9][0-9]*

Previous examples as rules

. ¥ =1{0,1,2,3,4,5,6,7.8.9)
. Ly =0][1-9][0-9]*
- S—A

A—0

A—1B

A—2B

A—9B
B—0B
B—1B

B—9B
B—¢

Formal definition of a language

. Definitions: consider the set (2, N, S € N, R), where
- 2. is the vocabulary which is a finite set of terminal
symbols
- N is afinite set of nonterminals symbols

- S € N is a special nonterminal called the start symbol

- a, p, and y are strings of zero or more terminal and
nonterminal symbols

- Ris a set of rules of the form aNf — y

Regular languages

. Definitions: consider the set (2, N, S € N, R), where

— 2 is the vocabulary which is a finite set of terminal symbols

- N is a finite set of nonterminals symbols

- § € N is a special nonterminal called the start symbol

- a, 5, and y are strings of zero or more terminal and nonterminal symbols
- Ris a set of rules of the form aNf — y

Recognized by

3 A — aB Regular Regular
expressions

All the languages we created eatrlier (for example, the set
of email addresses) can be described with such rules

Context-free languages

. Definitions: consider the set (2, N, S € N, R), where
— 2 is the vocabulary which is a finite set of terminal symbols
- N is a finite set of nonterminals symbols
- § € N is a special nonterminal called the start symbol
- a, 5, and y are strings of zero or more terminal and nonterminal symbols
- Ris a set of rules of the form aNf — y

Recognized by

Pushdown

2 A—a Context-free sutomata

This change might seem small, but it fundamentally alters
the kinds of languages that can be generated

Context-free and not regular

. 2=1{a,b,c,...,7}

. Create a context-free language for <, the set of
palindromes

Context-free and not regular

. 2=1{a,b,c,...,7}

. Create a context-free language for <, the set of
palindromes

- S—A
A—aAa
A—DbADb

A—zAz
A—¢

Context-free and not regular

. 2=1{a,b,c,...,7}

. Create a context-free language for <, the set of
palindromes

- S—A
A—aAa
A—DbADb

A—zAz
A—¢

-+ Can you do this with the regular language constraint on
rules?

The Chomsky Hierarchy

- Named after Noam Chomsky, the MIT linguist

- Different constraints on the rules lead to more powerful
sets of languages that can be described

- More powerful languages are harder (meaning, more
compute-intensive) to recognize

The Chomsky Hierarchy

. Definitions: consider the set (2, N, S € N, R), where
- X2 is the vocabulary which is a finite set of terminal symbols
- N is a finite set of nonterminals symbols
- § € Nis a special nonterminal called the start symbol
- a, , and y are strings of zero or more terminal and nonterminal symbols
— Ris a set of rules of the form aNf — y

Type Rules Name Recognized by Complexity
Regular
3 A— aB Regular expressions O(n)
2 A—-«a Context-free | uSndown O(n>)
automata

Context- Linear-bounded n
_}
1 aA,B ale sensitive Turing machine 0(2%)

Recursively Turing

. undecidable
enumerable Machines

0 aAﬁ—»y

Summary

- This view of languages (not sets, but “capturing”
generative processes) is very productive

Summary

- This view of languages (not sets, but “capturing”
generative processes) is very productive

- We can generalize this discussion to make a connection
between natural and other kinds of languages

Summary

- This view of languages (not sets, but “capturing”
generative processes) is very productive

- We can generalize this discussion to make a connection
between natural and other kinds of languages

- Consider, for example, computer programs
- They either compile or don’t compile
— Their structure determines their interpretation

Summary

- This view of languages (not sets, but “capturing”
generative processes) is very productive

- We can generalize this discussion to make a connection
between natural and other kinds of languages

- Consider, for example, computer programs

- They either compile or don’t compile

— Their structure determines their interpretation
- What is the structure?

Outline

formal

language
theory

natural
language

parsing

26

Linguistic fields of study

- Phonetics: sounds

Linguistic fields of study

- Phonetics: sounds
- Phonology: sound systems

Linguistic fields of study

+ Phonetics: sounds
- Phonology: sound systems
 Morphology: internal word structure

Linguistic fields of study

 Phonetics: sounds

- Phonology: sound systems

 Morphology: internal word structure

- Syntax: external word structure (sentences)

Linguistic fields of study

 Phonetics: sounds

- Phonology: sound systems

- Morphology: internal word structure

- Syntax: external word structure (sentences)
- Semantics: sentence meaning

Linguistic fields of study

 Phonetics: sounds

- Phonology: sound systems

- Morphology: internal word structure

- Syntax: external word structure (sentences)
- Semantics: sentence meaning

- Pragmatics: contextualized meaning and communicative
goals

Today’s focus

- Excellent book
% MORGAN&CLAYPOOL PUBLISHERS . Orgamzed |nto 100 m|n|-

Linguistic Fundamentals lectures

tor Natural Language PDF available for free via
rOCCSSlng .]

100 Essentials from JHU Ilbrary (along with

Morphology and Syntax tens of others in the

series)

https://tinyurl.com/
linguistic-fundamentals

Emily M. Bender

SYNTHESIS LECTURES ON
Human LANGUAGE TECHNOLOGIES

Graeme Hirst, Series Editor

https://tinyurl.com/linguistic-fundamentals
https://tinyurl.com/linguistic-fundamentals

What is syntax”

- A set of constraints on the possible sentences in the
language

- *A set of constraint on the possible sentence.
- *Dipanjan had [a] question.
- *You are on class.

- At a coarse level, we can divide all possible sequences of
words into two groups: valid and invalid (or grammatical
and ungrammatical)

POS Examples

- No general agreement about the exact set of parts of
speech

- One set of examples from the Penn Treebank

POS Examples

- No general agreement about the exact set of parts of
speech
- One set of examples from the Penn Treebank

- nouns: NN, NNS, NNP, NNPS

POS Examples

- No general agreement about the exact set of parts of
speech

- One set of examples from the Penn Treebank
- nouns: NN, NNS, NNP, NNPS

- adverbs: RB, RBR, RBS, RP

POS Examples

- No general agreement about the exact set of parts of
speech
- One set of examples from the Penn Treebank

- nouns: NN, NNS, NNP, NNPS
- adverbs: RB, RBR, RBS, RP
- verbs: VB, VBD, VBG, VBN, VBP, VBZ

POS Examples

 No general agreement about the exact set of parts of
speech
- One set of examples from the Penn Treebank
- nouns: NN, NNS, NNP, NNPS
- adverbs: RB, RBR, RBS, RP
- verbs: VB, VBD, VBG, VBN, VBP, VBZ

- (Here, different tags are used to capture the small bit of
morphology present in English)

Parts of Speech (POS)

- Three definitions of noun

Grammar school
(“metaphysical”)
a person, place,
thing, or idea

Parts of Speech (POS)

- Three definitions of noun

Grammar school Distributional
(“metaphysical”)
a person, place, the set of words
thing, or idea that have the
same distribution
as other nouns

{l,you,he} saw the
{bird,cat,dog/.

Parts of Speech (POS)

- Three definitions of noun

Grammar school
(“metaphysical’)
a person, place,
thing, or idea

Distributional

the set of words
that have the
same distribution
as other nouns

{l.you,he} saw the
{bird,cat,dog/.

Functional

the set of words
that serve as
arguments to

verbs
verb
/ N
noun adverb
\

adjective

Phrases and Constituents

- Longer sequences of words can perform the same
function as individual parts of speech:

- | saw [apT kidn]ne
- | saw [a kid playing basketball]np
- | saw [a kid playing basketball alone on the court]np

- This gives rise to the idea of a phrasal constituent, which
functions as a unit in relation to the rest of the sentence

Constituent tests

- How do you know if a phrase functions as a constituent?
- Afew tests
— Coordination
* Kim [read a book], [gave it to Sandy], and [left].
- Substitution with a word
» Kim read [a very interesting book about grammar].
» Kim read [it].
- See Bender #51

Constituent structure

- The head often constrains the internal structure of a constituent
- Examples
- verb
. [Kim]ARGUMENT jg [ready]ADJUNCT,
— adjective
* Kimis [readyapy [to make a pizza]v].
* * Kim is [tiredapy [to make a pizza]v].
- noun
" [The [red]apJy ball]
* * [The [red]apy ball [the stick]n]
' [The [red]aps ball [on top of the stick]pp]

More examples

- Kim planned [to give Sandy books].
- " Kim planned [to give Sandy].

- Kim planned [to give books].

- * Kim planned [to see Sandy books].

- Kim [would [give Sandy books]].

- Pat [helped [Kim give Sandy books]].
- *[[Give Sandy books] [surprised Kim]].

Human judgments

- How do we know what’s in and out? We simply ask
humans

- But how do humans know? This is the tie-in to formal
language theory

Context Free Grammar

- A finite set of rules licensing a IChomsky I’;‘_”' mal .
(possibly infinite) number of strings anguage hierarchy
refresher

finite state machine

context-free grammar

context-sensitive
grammar

Turing machine

Context Free Grammar

- A finite set of rules licensing a IChomsky I’;‘_”' mal .
(possibly infinite) number of strings anguage hierarchy
refresher

- e.g., some rules

finite state machine

context-free grammar

context-sensitive
grammar

Turing machine

Context Free Grammar

- A finite set of rules licensing a IChomsky I’;‘_”' mal .
(possibly infinite) number of strings anguage hierarchy
refresher

- e.g., some rules

- [sentence] — [subiject] [predicate]
finite state machine

context-free grammar

context-sensitive
grammar

Turing machine

Context Free Grammar

- A finite set of rules licensing a IChomsky I’;‘_”' mal .
(possibly infinite) number of strings anguage hierarchy
refresher

- e.g., some rules
- [sentence] — [subiject] [predicate]

] finite state machine
- [subject] — [noun phrase]

context-free grammar

context-sensitive
grammar

Turing machine

Context Free Grammar

- A finite set of rules licensing a
(possibly infinite) number of strings

- e.g., some rules

'sentence] — [subject] [predicate]
'subject] — [noun phrase]
'[noun phrase] — [determiner]?

[adjective]” [noun]

Chomsky formal
language hierarchy
refresher

finite state machine

context-free grammar

context-sensitive
grammar

Turing machine

Context Free Grammar

- A finite set of rules licensing a
(possibly infinite) number of strings

- e.g., some rules
- [sentence] — [subiject] [predicate]
- [subject] — [noun phrase]

- [noun phrase] — [determiner]?
[adjective]” [noun]

- [predicate] — [verb phrase] [adjunct]

Chomsky formal
language hierarchy
refresher

finite state machine

context-free grammar

context-sensitive
grammar

Turing machine

Context Free Grammar

- A finite set of rules licensing a
(possibly infinite) number of strings

- e.g., some rules
- [sentence] — [subiject] [predicate]
- [subject] — [noun phrase]

- [noun phrase] — [determiner]?
[adjective]” [noun]

- [predicate] — [verb phrase] [adjunct]
- Rules are phrasal or terminal

Chomsky formal
language hierarchy
refresher

finite state machine

context-free grammar

context-sensitive
grammar

Turing machine

Context Free Grammar

- A finite set of rules licensing a
(possibly infinite) number of strings

- e.g., some rules
- [sentence] — [subiject] [predicate]
- [subject] — [noun phrase]

- [noun phrase] — [determiner]?
[adjective]” [noun]

- [predicate] — [verb phrase] [adjunct]
- Rules are phrasal or terminal

— Phrasal rules form constituents in
a tree

Chomsky formal
language hierarchy
refresher

finite state machine

context-free grammar

context-sensitive
grammar

Turing machine

Context Free Grammar

- A finite set of rules licensing a
(possibly infinite) number of strings

- e.g., some rules

- [sentence] — [subiject] [predicate]

- [subject] — [noun phrase]

- [noun phrase] — [determiner]?
[adjective]” [noun]

- [predicate] — [verb phrase] [adjunct]
- Rules are phrasal or terminal

— Phrasal rules form constituents in
a tree

— Terminal rules are parts of speech
and produce words

Chomsky formal
language hierarchy
refresher

finite state machine

context-free grammar

context-sensitive
grammar

Turing machine

-xample

-xample

S— NPVP. S — NP VP

-xample

S—NPVP.
S = [JUNNS] VP.

S— NPVP
VP = JJ NNS

-xample

S— NPVP.
S — [JUNNS] VP
S = [Human] NNS VP .

S—= NPVP
VP —= JJ NNS
JJ = Human

-xample

S— NPVP.
S — [JUNNS] VP
S = [Human] NNS VP .

S — Human [languages] VP .

S — NP VP

VP — JJ NNS

JJ = Human

NNS — languages

-xample

S— NPVP.

S — [JJNNS] VP.

S = [Human] NNS VP .

S — Human [languages] VP .

S = Human languages [VBP ADJP] .

S — NP VP

VP — JJ NNS

JJ = Human

NNS — languages
VP — VBP ADJP

-xample

S— NPVP.

S — [JJNNS] VP.

S = [Human] NNS VP .

S — Human [languages] VP .

S = Human languages [VBP ADJP] .
S — Human languages [are] ADJP .

S— NPVP

VP — JJ NNS

JJ = Human

NNS — languages
VP — VBP ADJP
VBP — are

-xample

S— NPVP.

S — [JJNNS] VP .

S = [Human] NNS VP .

S — Human [languages] VP .

S = Human languages [VBP ADJP] .
S — Human languages [are] ADJP .

S — Human languages are [JJ SBAR] .

S— NPVP

VP — JJ NNS

JJ = Human

NNS — languages
VP — VBP ADJP
VBP — are

ADJP — JJ SBAR

-xample

S— NPVP.

S — [JJNNS] VP .

S = [Human] NNS VP .

S — Human [languages] VP .

S = Human languages [VBP ADJP] .
S — Human languages [are] ADJP .

S — Human languages are [JJ SBAR] .

S = Human languages are [hard] SBAR .

S = NP VP

VP = JJ NNS

JJ = Human

NNS — languages
VP — VBP ADJP
VBP — are

ADJP — JJ SBAR
JJ = hard

-xample

S— NPVP.

S — [JJNNS] VP .

S = [Human] NNS VP .

S — Human [languages] VP .

S = Human languages [VBP ADJP] .
S — Human languages [are] ADJP .

S — Human languages are [JJ SBAR] .

S = Human languages are [hard] SBAR .

S — Human languages are hard [VP] .

S = NP VP

VP = JJ NNS

JJ = Human

NNS — languages
VP — VBP ADJP
VBP — are

ADJP — JJ SBAR
JJ = hard

SBAR - S, S - VP

-xample

S— NPVP.

S — [JJNNS] VP .

S = [Human] NNS VP .

S — Human [languages] VP .

S = Human languages [VBP ADJP] .
S — Human languages [are] ADJP .

S — Human languages are [JJ SBAR] .

S = Human languages are [hard] SBAR .

S — Human languages are hard [VP] .

S — Human languages are hard [TO VP] .

S = NP VP

VP = JJ NNS

JJ = Human

NNS — languages
VP — VBP ADJP
VBP — are

ADJP — JJ SBAR
JJ = hard

SBAR - S, S - VP
VP = TO VP

-xample

S— NPVP.

S — [JJNNS] VP .

S = [Human] NNS VP .

S — Human [languages] VP .

S = Human languages [VBP ADJP] .
S — Human languages [are] ADJP .

S — Human languages are [JJ SBAR] .

S = Human languages are [hard] SBAR .

P].

S = Human languages are hard

[V
S — Human languages are hard [TO VP] .
[

S = Human languages are hard [to] V

S = NP VP

VP = JJ NNS

JJ = Human

NNS — languages
VP — VBP ADJP
VBP — are

ADJP — JJ SBAR
JJ = hard

SBAR - S, S - VP
VP = TO VP

TO = to

-xample

S— NPVP.

S — [JJNNS] VP .

S = [Human] NNS VP .

S — Human [languages] VP .

S = Human languages [VBP ADJP] .
S — Human languages [are] ADJP .

S — Human languages are [JJ SBAR] .

S = Human languages are [hard] SBAR .

S — Human languages are hard [VP] .

S — Human languages are hard [TO VP] .
S = Human languages are hard [to] VP .
S — Human languages are hard to [VB] .

S = NP VP

VP = JJ NNS

JJ = Human

NNS — languages
VP — VBP ADJP
VBP — are

ADJP — JJ SBAR
JJ = hard

SBAR - S, S - VP
VP = TO VP

TO = to

VP — VB

-xample

S— NPVP.

S — [JJNNS] VP .

S = [Human] NNS VP .

S — Human [languages] VP .

S = Human languages [VBP ADJP] .

S — Human languages [are] ADJP .

S — Human languages are [JJ SBAR] .

S = Human languages are [hard] SBAR .
S — Human languages are hard [VP] .

S — Human languages are hard [TO VP] .
S = Human languages are hard [to] VP .

S — Human languages are hard to [VB] .

S — Human languages are hard to [parse] .

S— NPVP

VP — JJ NNS

JJ = Human

NNS — languages
VP — VBP ADJP
VBP — are

ADJP — JJ SBAR
JJ = hard

SBAR =+ 5,5~ VP
VP = TO VP

TO — to

VP — VB

VB — parse

-xample

S— NPVP.

S — [JJNNS] VP .

S = [Human] NNS VP .

S — Human [languages] VP .

S = Human languages [VBP ADJP] .

S — Human languages [are] ADJP .

S — Human languages are [JJ SBAR] .

S = Human languages are [hard] SBAR .
S — Human languages are hard [VP] .

S — Human languages are hard [TO VP] .
S = Human languages are hard [to] VP .

S — Human languages are hard to [VB] .

S — Human languages are hard to [parse] .

S — Human languages are hard to parse .

S— NPVP

VP — JJ NNS

JJ = Human

NNS — languages
VP — VBP ADJP
VBP — are

ADJP — JJ SBAR
JJ = hard

SBAR =+ 5,5~ VP
VP = TO VP

TO — to

VP — VB

VB — parse

-xample

S— NPVP.

S — [JJNNS] VP .

S = [Human] NNS VP .

S — Human [languages] VP .

S = Human languages [VBP ADJP] .

S — Human languages [are] ADJP .

S — Human languages are [JJ SBAR] .

S = Human languages are [hard] SBAR .
S — Human languages are hard [VP] .

S — Human languages are hard [TO VP] .
S = Human languages are hard [to] VP .

S — Human languages are hard to [VB] .

S — Human languages are hard to [parse] .

S — Human languages are hard to parse .

NP

AN

JJ NNS

Human languages

parse

Treebanks

- Collections of natural text that are annotated according to
a particular syntactic theory

- Usually created by linguistic experts
- ldeally as large as possible

- Theories are usually coarsely divided into constituent/
phrase or dependency structure

Penn Treebank (1993

ABOUT
MEMBERS
COMMUNICATIONS

LANGUAGE RESOURCES v

Obtaining Data
Catalog
By Year
Top Ten Corpora
Projects
Search
Memberships
Data Scholarships
Tools
Papers
LR Wiki
DATA MANAGEMENT
COLLABORATIONS

LUy U auygiones

Home » Language Resources > Data

Treebank-3

Item Name:
Author(s):

LDC Catalog No.:

ISBN:
ISLRN:

Member Year(s):

DCMI Type(s):
Data Source(s):
Project(s):
Application(s):
Language(s):
Language ID(s):
License(s):

Online
Documentation:

Licensing Instructions:

Citation:

Related Works:

Introduction

Treebank-3

Mitchell P. Marcus, Beatrice Santorini, Mary Ann Marcinkiewicz, Ann Taylor
LDC99T42

1-58563-163-9

141-282-691-413-2

1999

Text

telephone speech, newswire, microphone speech, transcribed speech, varied
TIDES, GALE

parsing, natural language processing, tagging

English

eng

LDC User Agreement for Non-Members

LDC99T42 Documents

Subscription & Standard Members, and Non-Members

Marcus, Mitchell, et al. Treebank-3 LDC99T42. Web Download. Philadelphia:
Linguistic Data Consortium, 1999.

View

This release contains the following Treebank-2 Material:

e One million words of 1989 Wall Street Journal material annotated in Treebank Il style.
o A small sample of ATIS-3 material annotated in Treebank Il style.
o Afully tagged version of the Brown Corpus.

and the following new material:

e Switchboard tagged, dysfluency-annotated, and parsed text

e Brown parsed text

The Treebank bracketing style is designed to allow the extraction of simple predicate/argument structure.

Over one million words of text are provided with this bracketing applied.

Nata

httos.//catalog.ldc.upern

The Penn Treebank

- Syntactic annotation of a million words of the 1989 Wall
Street Journal, plus other corpora (released in 1993)

- (Trivia: People often discuss “The Penn Treebank” when
the mean the WSJ portion of it)

The Penn Treebank

- Syntactic annotation of a million words of the 1989 Wall
Street Journal, plus other corpora (released in 1993)

- (Trivia: People often discuss “The Penn Treebank” when
the mean the WSJ portion of it)

- Contains 74 total tags: 36 parts of speech, 7 punctuation
tags, and 31 phrasal constituent tags, plus some relation
markings

The Penn Treebank

- Syntactic annotation of a million words of the 1989 Wall
Street Journal, plus other corpora (released in 1993)

- (Trivia: People often discuss “The Penn Treebank” when
the mean the WSJ portion of it)

- Contains 74 total tags: 36 parts of speech, 7 punctuation
tags, and 31 phrasal constituent tags, plus some relation
markings

- Was the foundation for an entire field of research and
applications for over twenty years

((S
(NP-SBJ
(NP (NNP Pierre) (NNP Vinken))
(;)
(ADJP
(NP (CD 61) (NNS years))
(JJ old))
(,))
(VP (MD will)
(VP (VB join)
(NP (DT the) (NN board))
(PP-CLR (IN as)
(NP (DT a) (JJ nonexecutive) (NN director)))
(NP-TMP (NNP Nov.) (CD 29))))

(--)))

Pierre Vinken, 61 years old, will join the board

as a nonexecutive director Nov. 29.

https.//commons.wikimedia.org/wiki/File:PierreVinken. jog

((S
(NP-SBJ
(NP (NNP Pierre) (NNP Vinken))
(;)
(ADJP
(NP (CL S years))

(,))
(VP (MD wil
(VP (VB join)
(NP (DT the) (NN board))
(PP-CLR (IN as)
(NP (DT a) (JJ nonexecutive) (NN director)))
(NP-TMP (NNP Nov.) (CD 29))))

(--)))

Pierre Vinken, 61 years old, will join the board

as a nonexecutive director Nov. 29.

https.//commons.wikimedia.org/wiki/File:PierreVinken. jog

Summary

- Formal language theory is a theory that does the

following:
- provides a compact representation of a language

— provides an account for how strings within a language

are generated
- It’s very useful for describing many simple languages

- It can also be applied to natural language

Outline

formal

language
theory

natural
language

parsing

44

Where we are

- We discussed formal language theory
- We showed how it might apply to human language
- But how do we get a computer to use it?

- Sentences (or other strings we wish to parse) are
observed; the structure is hidden

- We assume these were generated by a model
- We need

" An algorithm for finding the sequence of actions
under that model, most likely to have produced it

» A way to learn that model

Where do grammars come from?

Where do grammars come from?

- Treebanks!

Given a treebank, and a formalism, we can learn statistics
by counting over the annotated instances

| stole this joke from Chris Callison-Burch

https.//www.shutterstock.com/image-vector/stork-carrying-baby-boy- 133823486

Probabllities

- For example, a context-free grammar
- We can get probabilities by reading all instances from a Treebank

P(A) « aCFGrule

PA—BC)=)
= P(A") « all CFG rules with the same lefthand side
- e.g.,

-~ S—>NP,NPVP. [0.002]

- NP> NNPNNP [0.037]

~ o [0.999]

~ NP> * [X]

- VP - VB NP [0.057]

- NP — PRP$ NN [0.008]

— [0.987]

Parsing

- If the grammar has certain properties (Type 2 or 3), we
can efficiently answer the first question (find the hidden
structure) with a parser

- Q1:is the sentence in the language of the parser?
- Q2: What is the structure above that sentence?

Algorithms

- The CKY algorithm for parsing with constituency
grammars

Chart parsing for constituency grammars

- Maintains a chart of nonterminals spanning words, e.g.,
- NP over words 1..4 and 2..5
- VP over words 4..6 and 4..8

- etc

- Build this chart from the bottom upward: the opposite
direction from generation

Chart parsing for constituency grammars

055
1VPs
oNP:2 2PPs, 2V/Ps
oNP1 sNPs
oNN7 1NNz, 1VB2 2VB3,2IN3 3D T4 4NN
Time flies like an arrow

1 2 3 4 5

CKY algorithm

- How do we produce this chart? Cocke-Younger-Kasami (CYK/
CKY)

- Basic idea is to apply rules in a bottom-up fashion, applying all
rules, and (recursively) building larger constituents from
smaller ones

- Input: sentence of length N
for width in 2..N
for beginiin 1..{N - width}
j =1+ width
forsplitkin{i+ 1}..{ -1}
for all rulesA - B C
create A if iBk and kC;

CKY algorithm

Time flies
0 1 2

like

3

arl

4

arrow

CKY algorithm

NN NN, VB VB, IN DT NN

Time flies like an arrow
0 1 2 3 4

CKY algorithm

NP—- NN
NN NN, VB VB, IN
Time flies like

0 1 2

3

NP— DT NN

DT NN

arl arrow
4

5

CKY algorithm

NP— NN NN
NP—= NN

NN NN, VB

Time flies
0 1

PP— 2//\/3 3/\/P5
NP—=DT NN
VB, IN DT NN
like an arrow

2 3 4

CKY algorithm

NP— NN NN
NP—= NN

NN NN, VB

Time flies
0 1

VP— 5\/Bs sNPs5
PP— 5/N3 3NPs

NP— DT NN

VB, IN DT NN

like an arrow
2 3 4

CKY algorithm

VP— VB PP
VP— 2V/Bs 3NPs
NP— NN NN PP— 2IN3 3NPs
NP=NN NP—DT NN
NN NN, VB VB, IN DT NN
Time flies like an arrow

0 1

2 3 4

CKY algorithm

S — oNP1 1VPs
VP— VB PP
VP— 2V/Bs 3NPs
NP— NN NN PP— 2IN3 3NPs
NP=NN NP—DT NN
NN NN, VB VB, IN DT NN
Time flies like an arrow

0 1 2 3 4

CKY algorithm

S = oNP2 5VP5

S — oNP1 1VPs
VP— VB PP
VP— 2V/Bs 3NPs
NP— NN NN PP— 2IN3 3NPs
NP=NN NP—DT NN
NN NN, VB VB, IN DT NN
Time flies like an arrow

0 1

2 3 4

CKY algorithm

- Parsing questions:
- Q1:is a given sentence in the language of the parser?
- Q2: What is the structure above that sentence?

- Termination: is there a chart entry at oSn?
- ¥ string is in the language (Q1)

— Structures can be obtained by following backpointers in
dynamic programming chart (not covered today)

- Other technical details not covered today:

- The probability of each parse is the product of the rule
probabilities

- Ambiguities are resolved with these scores

- Demos:

- Berkeley Neural Parser: https://parser.kitaev.io

- Spacy dependency parser: https://explosion.ai/demos/
displacy

https://parser.kitaev.io
https://explosion.ai/demos/displacy
https://explosion.ai/demos/displacy

Summary

Iafnog;T;glge HEtE parsing
Thee language

provides a a real-world (if ~ a means of
framework for messy) making text
reasoning application useable
about area for under formal
languages of formal language
all kinds language theory

theory 57

