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S0 gorgeous was the
spectacle on the May morning
of 1910 when nine kings rode
in the funeral of Edward VIl of
England that the crowd,
waiting in hushed and black-
clad awe, could not keep
back gasps of admiration.
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Other examples

GOOD

python
program

HTML

URLs

BA

O




What are the abstractions and tools
that undetrlie all of these examples?




Today we will cover

math linguistics engineering
formal
language el Vel parsing
theory language
abstract/on applying making them
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usable by a
about natural
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structure phenomena




Goals for today

- After today, you should be able to
- describe syntax both mathematically and linguistically
- enumerate the formal language (Chomsky) hierarchy
- provide a description of constituent grammars
- sketch the algorithm for CKY parsing




Outline
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natural
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Formal Language Theory

- Generalization: define a language to be a set of strings
under some alphabet, 2

- e.g., the set of valid English sentences (where the
“alphabet” is English words), or the set of valid Python
programs




Formal Language Theory

- Generalization: define a language to be a set of strings
under some alphabet, 2

- e.g., the set of valid English sentences (where the
“alphabet” is English words), or the set of valid Python
programs

- Formal Language Theory provides a common framework
for studying properties of these languages, e.g.,

- Is this file a valid C++ program? A valid Czech
sentence?
- What is the structure? <=> How do | find its meaning?

- How hard / time-consuming is it to answer these
guestions?




Languages as sets

. 2=1{0,1,2,3,4,5,6,7,8,9}

- What do you think these languages describe (in words?)

# =1{0,1,2,3,4,5, ...}
L, ={—12.4,0, 142, 142.1, 142.01, 142.001, ...}




Definitions

formal
name

think... description

the fundamental unit under
letter token consideration (e.g., a word, or a da, ba . e
UTF-8-encoded letter)

alphabet vocabulary A set of tokens 2

a sequence of zero or more tokens in o ,B
, , o o o

word string the vocabulary

language language a set of strings A




Some notes

. 2 * is the set of all strings in a vocabulary, 2

- One special string is the empty string, {} or €

. Alanguage Z can be very large—even infinite!
- In fact, most languages probably are
- List a few




Generative descriptions of lang.

- A definition of languages as sets is not very useful
- Why not?
- A better approach:

- Develop a process that can describe how strings in a
language

- New membership criteria:
* IN: can be generated by this process
* OUT: cannot be generated by this process




Generative examples

. 2=1{0,1,2,3,4,5,6,7,8,9}

* You probably know one generative process already:
regular expressions

- What do these languages describe (in words?)

31=Z*
Z,=01[1-9][0-9]*




Regular language examples

- How can we write the following languages?
- All floating point numbers

— Email addresses

- These are much more compact representations compared
to their set notations!




Reqgular languages with rules

- The “regular expression” syntax is a shortcut
representation

- We can describe the generative process more formally
using a set of rules that are recursively applied

A — Aa
A—a
- Rules have two types of symbols:

- terminal symbols (lowercase letter) are normal
vocabulary items

- nonterminal symbols (capital letters) are recursively
replaced until there are no more of them




Previous examples as rules

. 2=1{0,1,2,3,4,5,6,7,8,9}




Previous examples as rules

. ¥ =1{0,123.45,6,7.8.9)
. P =T

S—A

A — 0OA

A— 1A

A — 2A

A - 9A




Previous examples as rules

. ¥ =1{0,123.45,6,7.8.9)
. P =T

S—A

A — 0OA

A— 1A

A — 2A

A — 9A
- A—¢€




Previous examples as rules

. 2=10,1,2,3,4,5,6,7,8,9}
. L, =0][1-9][0-9]*




Previous examples as rules

. ¥ =1{0,1,2,3,4,5,6,7.8.9)
. Ly =0][1-9][0-9]*
- S—A

A—0

A—1B

A—2B

A—9B
B—0B
B—1B

B—9B
B—¢




Formal definition of a language

. Definitions: consider the set (2, N, S € N, R), where
- 2. is the vocabulary which is a finite set of terminal
symbols
- N is afinite set of nonterminals symbols

- S € N is a special nonterminal called the start symbol

- a, p, and y are strings of zero or more terminal and
nonterminal symbols

- Ris a set of rules of the form aNf — y




Regular languages

. Definitions: consider the set (2, N, S € N, R), where

— 2 is the vocabulary which is a finite set of terminal symbols

- N is a finite set of nonterminals symbols

- § € N is a special nonterminal called the start symbol

- a, 5, and y are strings of zero or more terminal and nonterminal symbols
- Ris a set of rules of the form aNf — y

Recognized by

3 A — aB Regular Regular
expressions

All the languages we created eatrlier (for example, the set
of email addresses) can be described with such rules




Context-free languages

. Definitions: consider the set (2, N, S € N, R), where
— 2 is the vocabulary which is a finite set of terminal symbols
- N is a finite set of nonterminals symbols
- § € N is a special nonterminal called the start symbol
- a, 5, and y are strings of zero or more terminal and nonterminal symbols
- Ris a set of rules of the form aNf — y

Recognized by

Pushdown

2 A—a Context-free sutomata

This change might seem small, but it fundamentally alters
the kinds of languages that can be generated




Context-free and not regular

. 2=1{a,b,c,...,7}

. Create a context-free language for <, the set of
palindromes




Context-free and not regular

. 2=1{a,b,c,...,7}

. Create a context-free language for <, the set of
palindromes

- S—A
A—aAa
A—DbADb

A—zAz
A—¢




Context-free and not regular

. 2=1{a,b,c,...,7}

. Create a context-free language for <, the set of
palindromes

- S—A
A—aAa
A—DbADb

A—zAz
A—¢

-+ Can you do this with the regular language constraint on
rules?




The Chomsky Hierarchy

- Named after Noam Chomsky, the MIT linguist

- Different constraints on the rules lead to more powerful
sets of languages that can be described

- More powerful languages are harder (meaning, more
compute-intensive) to recognize




The Chomsky Hierarchy

. Definitions: consider the set (2, N, S € N, R), where
- X2 is the vocabulary which is a finite set of terminal symbols
- N is a finite set of nonterminals symbols
- § € Nis a special nonterminal called the start symbol
- a, , and y are strings of zero or more terminal and nonterminal symbols
— Ris a set of rules of the form aNf — y

Type Rules Name Recognized by Complexity
Regular
3 A— aB Regular expressions O(n)
2 A—-«a Context-free | uSndown O(n>)
automata

Context- Linear-bounded n
_}
1 aA,B ale sensitive  Turing machine 0(2%)

Recursively Turing

. undecidable
enumerable Machines

0 aAﬁ—»y




Summary

- This view of languages (not sets, but “capturing”
generative processes) is very productive
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Summary

- This view of languages (not sets, but “capturing”
generative processes) is very productive

- We can generalize this discussion to make a connection
between natural and other kinds of languages

- Consider, for example, computer programs
- They either compile or don’t compile
— Their structure determines their interpretation




Summary

- This view of languages (not sets, but “capturing”
generative processes) is very productive

- We can generalize this discussion to make a connection
between natural and other kinds of languages

- Consider, for example, computer programs

- They either compile or don’t compile

— Their structure determines their interpretation
- What is the structure?
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Linguistic fields of study

- Phonetics: sounds
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- Phonology: sound systems
 Morphology: internal word structure
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Linguistic fields of study

 Phonetics: sounds

- Phonology: sound systems

- Morphology: internal word structure

- Syntax: external word structure (sentences)
- Semantics: sentence meaning

- Pragmatics: contextualized meaning and communicative
goals




Today’s focus

- Excellent book
% MORGAN&CLAYPOOL PUBLISHERS . Orgamzed |nto 100 m|n|-

Linguistic Fundamentals lectures

tor Natural Language PDF available for free via
rOCCSSlng . ]

100 Essentials from JHU Ilbrary (along with

Morphology and Syntax tens of others in the

series)

https://tinyurl.com/
linguistic-fundamentals

Emily M. Bender

SYNTHESIS LECTURES ON
Human LANGUAGE TECHNOLOGIES

Graeme Hirst, Series Editor



https://tinyurl.com/linguistic-fundamentals
https://tinyurl.com/linguistic-fundamentals

What is syntax”

- A set of constraints on the possible sentences in the
language

- *A set of constraint on the possible sentence.
- *Dipanjan had [a] question.
- *You are on class.

- At a coarse level, we can divide all possible sequences of
words into two groups: valid and invalid (or grammatical
and ungrammatical)




POS Examples

- No general agreement about the exact set of parts of
speech

- One set of examples from the Penn Treebank
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POS Examples

- No general agreement about the exact set of parts of
speech
- One set of examples from the Penn Treebank

- nouns: NN, NNS, NNP, NNPS
- adverbs: RB, RBR, RBS, RP
- verbs: VB, VBD, VBG, VBN, VBP, VBZ




POS Examples

 No general agreement about the exact set of parts of
speech
- One set of examples from the Penn Treebank
- nouns: NN, NNS, NNP, NNPS
- adverbs: RB, RBR, RBS, RP
- verbs: VB, VBD, VBG, VBN, VBP, VBZ

- (Here, different tags are used to capture the small bit of
morphology present in English)




Parts of Speech (POS)

- Three definitions of noun

Grammar school
(“metaphysical”)
a person, place,
thing, or idea




Parts of Speech (POS)

- Three definitions of noun

Grammar school  Distributional
(“metaphysical”)
a person, place, the set of words
thing, or idea that have the
same distribution
as other nouns

{l,you,he} saw the
{bird,cat,dog/.




Parts of Speech (POS)

- Three definitions of noun

Grammar school
(“metaphysical’)
a person, place,
thing, or idea

Distributional

the set of words
that have the
same distribution
as other nouns

{l.you,he} saw the
{bird,cat,dog/.

Functional

the set of words
that serve as
arguments to

verbs
verb
/ N
noun adverb
\

adjective




Phrases and Constituents

- Longer sequences of words can perform the same
function as individual parts of speech:

- | saw [apT kidn]ne
- | saw [a kid playing basketball]np
- | saw [a kid playing basketball alone on the court]np

- This gives rise to the idea of a phrasal constituent, which
functions as a unit in relation to the rest of the sentence




Constituent tests

- How do you know if a phrase functions as a constituent?
- Afew tests
— Coordination
* Kim [read a book], [gave it to Sandy], and [left].
- Substitution with a word
» Kim read [a very interesting book about grammar].
» Kim read [it].
- See Bender #51




Constituent structure

- The head often constrains the internal structure of a constituent
- Examples
- verb
. [Kim]ARGUMENT jg [ready]ADJUNCT,
— adjective
* Kimis [readyapy [to make a pizza]v].
* * Kim is [tiredapy [to make a pizza]v].
- noun
" [The [red]apJy ball]
* * [The [red]apy ball [the stick]n]
'  [The [red]aps ball [on top of the stick]pp]




More examples

- Kim planned [to give Sandy books].
- " Kim planned [to give Sandy].

- Kim planned [to give books].

- * Kim planned [to see Sandy books].

- Kim [would [give Sandy books]].

- Pat [helped [Kim give Sandy books]].
- *[[Give Sandy books] [surprised Kim]].




Human judgments

- How do we know what’s in and out? We simply ask
humans

- But how do humans know? This is the tie-in to formal
language theory




Context Free Grammar

- A finite set of rules licensing a IChomsky I’;‘_”' mal .
(possibly infinite) number of strings anguage hierarchy
refresher

finite state machine

context-free grammar

context-sensitive
grammar

Turing machine
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Context Free Grammar

- A finite set of rules licensing a
(possibly infinite) number of strings

- e.g., some rules

'sentence] — [subject] [predicate]
'subject] — [noun phrase]
'[noun phrase] — [determiner]?

[adjective]” [noun]
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Context Free Grammar

- A finite set of rules licensing a
(possibly infinite) number of strings

- e.g., some rules

- [sentence] — [subiject] [predicate]

- [subject] — [noun phrase]

- [noun phrase] — [determiner]?
[adjective]” [noun]

- [predicate] — [verb phrase] [adjunct]
- Rules are phrasal or terminal

— Phrasal rules form constituents in
a tree

— Terminal rules are parts of speech
and produce words

Chomsky formal
language hierarchy
refresher

finite state machine

context-free grammar

context-sensitive
grammar

Turing machine
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Treebanks

- Collections of natural text that are annotated according to
a particular syntactic theory

- Usually created by linguistic experts
- ldeally as large as possible

- Theories are usually coarsely divided into constituent/
phrase or dependency structure




Penn Treebank (1993
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LANGUAGE RESOURCES v

Obtaining Data
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By Year
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Search
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Licensing Instructions:

Citation:
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e One million words of 1989 Wall Street Journal material annotated in Treebank Il style.
o A small sample of ATIS-3 material annotated in Treebank Il style.
o Afully tagged version of the Brown Corpus.

and the following new material:

e Switchboard tagged, dysfluency-annotated, and parsed text

e Brown parsed text
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The Penn Treebank

- Syntactic annotation of a million words of the 1989 Wall
Street Journal, plus other corpora (released in 1993)

- (Trivia: People often discuss “The Penn Treebank” when
the mean the WSJ portion of it)
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The Penn Treebank

- Syntactic annotation of a million words of the 1989 Wall
Street Journal, plus other corpora (released in 1993)

- (Trivia: People often discuss “The Penn Treebank” when
the mean the WSJ portion of it)

- Contains 74 total tags: 36 parts of speech, 7 punctuation
tags, and 31 phrasal constituent tags, plus some relation
markings

- Was the foundation for an entire field of research and
applications for over twenty years




((S
(NP-SBJ
(NP (NNP Pierre) (NNP Vinken) )
(; )
(ADJP
(NP (CD 61) (NNS years) )
(JJ old))
(,))
(VP (MD will)
(VP (VB join)
(NP (DT the) (NN board) )
(PP-CLR (IN as)
(NP (DT a) (JJ nonexecutive) (NN director) ))
(NP-TMP (NNP Nov.) (CD 29))))

(--)))

Pierre Vinken, 61 years old, will join the board

as a nonexecutive director Nov. 29.

https.//commons.wikimedia.org/wiki/File:PierreVinken. jog
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Summary

- Formal language theory is a theory that does the

following:
- provides a compact representation of a language

— provides an account for how strings within a language

are generated
- It’s very useful for describing many simple languages

- It can also be applied to natural language
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Where we are

- We discussed formal language theory
- We showed how it might apply to human language
- But how do we get a computer to use it?

- Sentences (or other strings we wish to parse) are
observed; the structure is hidden

- We assume these were generated by a model
- We need

" An algorithm for finding the sequence of actions
under that model, most likely to have produced it

» A way to learn that model




Where do grammars come from?




Where do grammars come from?

- Treebanks!

Given a treebank, and a formalism, we can learn statistics
by counting over the annotated instances

| stole this joke from Chris Callison-Burch

https.//www.shutterstock.com/image-vector/stork-carrying-baby-boy- 133823486




Probabllities

- For example, a context-free grammar
- We can get probabilities by reading all instances from a Treebank

P(A) « aCFGrule

PA—BC)= )
= P(A")  « all CFG rules with the same lefthand side
- e.g.,

-~ S—>NP,NPVP. [0.002]

- NP> NNPNNP  [0.037]

~ o [0.999]

~ NP> * [X]

- VP - VB NP [0.057]

- NP — PRP$ NN [0.008]

— [0.987]




Parsing

- If the grammar has certain properties (Type 2 or 3), we
can efficiently answer the first question (find the hidden
structure) with a parser

- Q1:is the sentence in the language of the parser?
- Q2: What is the structure above that sentence?




Algorithms

- The CKY algorithm for parsing with constituency
grammars




Chart parsing for constituency grammars

- Maintains a chart of nonterminals spanning words, e.g.,
- NP over words 1..4 and 2..5
- VP over words 4..6 and 4..8

- etc

- Build this chart from the bottom upward: the opposite
direction from generation




Chart parsing for constituency grammars

055
1VPs
oNP:2 2PPs, 2V/Ps
oNP1 sNPs
oNN7 1NNz, 1VB2 2VB3,2IN3 3D T4 4NN
Time flies like an arrow

1 2 3 4 5




CKY algorithm

- How do we produce this chart? Cocke-Younger-Kasami (CYK/
CKY)

- Basic idea is to apply rules in a bottom-up fashion, applying all
rules, and (recursively) building larger constituents from
smaller ones

- Input: sentence of length N
for width in 2..N
for beginiin 1..{N - width}
j =1+ width
forsplitkin{i+ 1}..{ -1}
for all rulesA - B C
create A if iBk and kC;




CKY algorithm

Time flies
0 1 2

like

3

arl

4

arrow




CKY algorithm

NN NN, VB VB, IN DT NN

Time flies like an arrow
0 1 2 3 4




CKY algorithm

NP—- NN
NN NN, VB VB, IN
Time flies like

0 1 2

3

NP— DT NN

DT NN

arl arrow
4

5




CKY algorithm

NP— NN NN
NP—= NN

NN NN, VB

Time flies
0 1

PP— 2//\/3 3/\/P5
NP—=DT NN
VB, IN DT NN
like an arrow

2 3 4




CKY algorithm

NP— NN NN
NP—= NN

NN NN, VB

Time flies
0 1

VP— 5\/Bs sNPs5
PP— 5/N3 3NPs

NP— DT NN

VB, IN DT NN

like an arrow
2 3 4




CKY algorithm

VP— VB PP
VP— 2V/Bs 3NPs
NP— NN NN PP— 2IN3 3NPs
NP=NN NP—DT NN
NN NN, VB VB, IN DT NN
Time flies like an arrow

0 1

2 3 4




CKY algorithm

S — oNP1 1VPs
VP— VB PP
VP— 2V/Bs 3NPs
NP— NN NN PP— 2IN3 3NPs
NP=NN NP—DT NN
NN NN, VB VB, IN DT NN
Time flies like an arrow

0 1 2 3 4




CKY algorithm

S = oNP2 5VP5

S — oNP1 1VPs
VP— VB PP
VP— 2V/Bs 3NPs
NP— NN NN PP— 2IN3 3NPs
NP=NN NP—DT NN
NN NN, VB VB, IN DT NN
Time flies like an arrow

0 1

2 3 4




CKY algorithm

- Parsing questions:
- Q1:is a given sentence in the language of the parser?
- Q2: What is the structure above that sentence?

- Termination: is there a chart entry at oSn?
- ¥ string is in the language (Q1)

— Structures can be obtained by following backpointers in
dynamic programming chart (not covered today)

- Other technical details not covered today:

- The probability of each parse is the product of the rule
probabilities

- Ambiguities are resolved with these scores




- Demos:

- Berkeley Neural Parser: https://parser.kitaev.io

- Spacy dependency parser: https://explosion.ai/demos/
displacy



https://parser.kitaev.io
https://explosion.ai/demos/displacy
https://explosion.ai/demos/displacy

Summary

Iafnog;T;glge HEtE parsing
Thee language

provides a a real-world (if ~ a means of
framework for messy) making text
reasoning application useable
about area for under formal
languages of formal language
all kinds language theory
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