SYNTAX

Matt Post
IntroHLT class
11 September 2025

JOHNS HOPKINS

UNIVERSITY

Languages

GOOD

python
program

HTML

URLs

language

S
“|||\‘\|||||H||\D

What are the abstractions and tools
that underlie all of these examples?

Today we will cover

math linguistics engineering

formal
natural

language

language
theory

parsing

abstract/ops applying making them
for reasoning structure to

usable by a
about natural

computer

structure phenomena

Goals for today

- After today, you should be able to
- define a language
- describe syntax both mathematically and linguistically
- enumerate the formal language (Chomsky) hierarchy
- provide a description of constituent grammars
- sketch the algorithm for CKY parsing

Outline

formal
natural

language

language
theory

parsing

Formal Language Theory

- Define a language to be a set of strings under some
alphabet, 2

- 2. = a set of symbols (letters, words, numbers, etc)
- string = a sequence of symbols from X

- e.g., the set of valid English sentences (where the
“alphabet” is English words), or the set of valid Python
programs

- Formal Language Theory provides a common framework
for studying properties of these languages

Some terminology

. 2* (“sigma star”) is the set of all strings in the vocabulary
- € Is the empty string
. Alanguage Z can be finite or infinite

Languages as sets

. 2=1{0,1,2,3,4,5,6,7,8,9, —, . }
- What do you think these languages describe (in words?)

* =1{0,1,2,3,4,5, ...}
L, ={—124,0, 142, 142.1, 142.01, 142.001, ...}

Regular expression examples

- A more compact representation than explicit listing:
regular expressions

- Notes:

- . = match any character

- | ="or’

- [] = “choose one of these”

- + = “one or more of the previous”
- * ="zero or more of the previous”

- What do these languages describe (in words?)
31 — *
Z,=0][1-9][0-9]*

Generative descriptions of lang.

- A definition of languages as sets is not very useful
- Why not?
- A better approach:

- Develop a process that can describe how strings in a
language are generated

- New membership criteria:
" IN: can be generated by this process
' OUT: cannot be generated by this process

Generating from a language

- Imagine a process that repeatedly

- selects a next symbol from the alphabet under some
strategy

— decides whether to terminate
- How can we formalize this?

Regular languages with rules

- The “regular expression” syntax is a shortcut
representation

- We can describe the generative process more formally
using a set of rules that are recursively applied

A — Aa
A—a
- Rules have two types of symbols:

- terminal symbols (lowercase, e.g., a) are normal
vocabulary items

— nonterminal symbols (uppercase, e.g., A) are
recursively replaced until there are no more of them

Previous examples as rules

. Alphabet: ~ = {0,1,2,3,4,5,6,7,8,9}

. Language: &, = X

- Generative rules: S = A
A — OA
A— 1A
A — 2A

A — 9A
- A ¢

How can we modify this to

prevent the empty string?

14

Previous examples as rules

. Alphabet: 2 = {0,1,2,3,4,5,6,7,8,9}
. Language: &, = X7

- Generative rules: S & A
A — 0B
A— 1B
A - 2B

A — 9B
- B—oe€

Formal definition of a language

. Definitions: consider the set (2, N, S € N, R), where

— 2. is the vocabulary which is a finite set of terminal
symbols
- N is a finite set of nonterminals symbols

- S € N is a special nonterminal called the start symbol

- a, f, and y are strings of zero or more terminal and
nonterminal symbols

- R is a set of rules of the form aNf — y

Regular languages

. Definitions: consider the set (2, N, S € N, R), where

- 2 is the vocabulary which is a finite set of terminal symbols

- N is afinite set of nonterminals symbols

- S € N is a special nonterminal called the start symbol

- a, 3, and y are strings of zero or more terminal and nonterminal symbols
- Ris a set of rules of the form aNfj — y

Type Rules Name Recognized by

3 A — aB Regular Regulgr
expressions

All the languages we created earlier (for example, the set
of email addresses) can be described with such rules

Context-free languages

. Definitions: consider the set (2, N, S € N, R), where
- 2 is the vocabulary which is a finite set of terminal symbols
- N is afinite set of nonterminals symbols
- S € N is a special nonterminal called the start symbol
- a, 3, and y are strings of zero or more terminal and nonterminal symbols
- Ris a set of rules of the form aNfj — y

Type Rules Name Recognized by
Pushdown
2 A-a Context-free autornata

This change might seem small, but it fundamentally alters
the kinds of languages that can be generated

Palindromes

- "No sir, away, a papaya war is on!"

— aibohphobia—the fear of palindromes

- "engage le jeu que je le gagne”

- Belphegor's prime: 1000000000000066600000000000001

Context-free and not regular

. 2={a,b,c,...,7}

. Create a context-free language for £, the set of
palindromes

- S—A
A—aAa
A—DbADb

A—zAz
A—¢

Exercise

- Can you construct a grammar recognizing palindromes
using the regular constraint on grammar rules?

- Rules of the form A = Aaor A — aA
- (Nonterminals must be on one side or the other)

Nonterminals as categories

- We can give meaning to the categories

- START—-REPEAT
REPEAT—a REPEAT a REPEAT — a DONE a
REPEAT—b REPEAT b REPEAT — b DONE b

REPEAT—z REPEAT z REPEAT — z DONE z
REPEAT—¢ DONE — €

The Chomsky Hierarchy

- Named after Noam Chomsky, the MIT linguist

- Different constraints on the rules lead to more powerful
sets of languages that can be described

- More powerful languages are harder (meaning, more
compute-intensive) to recognize

The Chomsky Hierarchy

. Definitions: consider the set (2, N, S € N, R), where
— 2 is the vocabulary which is a finite set of terminal symbols
- N s a finite set of nonterminals symbols
- § € Nis a special nonterminal called the start symbol
- a, 5, and y are strings of zero or more terminal and nonterminal symbols
- Ris a set of rules of the form aNf — y

Type Rules Name Recognized by Complexity
Regqular
3 A— aB Regular expressions On)
2 A—a Context-free ' Jshdown O(n?)
automata

Context- Linear-bounded n
_}
1 CIA,B a}/ﬂ sensitive Turing machine 02"

Recursively Turing .
—
g OYA,B }/ enumerable Machines undecidable

summary

- Given all strings under a vocabulary, a language can be
thought of as a subset of those strings

- It is productive to formulate languages as the set of strings
produced by a generative process

- We can generalize this discussion to make a connection
between natural and other kinds of languages

- Consider, for example, computer programs, where the set
of Python programs is the subset of strings that can be
parsed by the Python interpreter

Outline

formal

language
theory

natural
language

parsing

26

Linguistic fields of study

+ Phonetics: sounds

- Phonology: sound systems

- Morphology: internal word structure

- Syntax: external word structure (sentences)
- Semantics: sentence meaning

- Pragmatics: contextualized meaning and communicative
goals

Today's focus

é}@ MORGAN&CLAYPOOL PUBLISHERS

Linguistic Fundamentals
for Natural Language

Processing

100 Essentials from
Morphology and Syntax

Emily M. Bender

SYNTHESIS LLECTURES ON
HuMaN LANGUAGE TECHNOLOGIES

Graeme Hirst, Series Editor

Excellent book

Organized into 100 mini-
lectures

PDF available for free via
JHU library (along with
tens of others in the
series)

https://tinyurl.com/
linguistic-fundamentals

https://tinyurl.com/linguistic-fundamentals
https://tinyurl.com/linguistic-fundamentals

What is syntax”

- A set of constraints on the possible sentences in the
language

- *A set of constraint on the possible sentence.
- *Dipanjan had [a] question.
- *You are on class.

- At a coarse level, we can divide all possible sequences of
words into two groups: valid and invalid (or grammatical
and ungrammatical)

Human judgments

- “Ungrammatical” = “not in the language”
- Proficient speakers make these judgments
- But we still want to try to model the process

Parts of speech

- No general agreement about the exact set of parts of
speech

- From grammar school:

noun: a person, place, thing, or idea
verb: a word that shows action

preposition: a word that describes relationships to a
noun

adjective: a word that describes a noun
adverb: a word that describes a verb or adjective
others: pronoun, conjunction, interjection

Phrases and Constituents

-+ Longer sequences of words can perform the same
function as individual parts of speech:

- | saw [apT Kidn]np
- | saw [a kid playing basketball]np
- | saw [a kid playing basketball alone on the court]np

- This gives rise to the idea of a phrasal constituent, which
functions as a unit in relation to the rest of the sentence

Constituent tests

- How do you know if a phrase functions as a constituent?
- Afew tests
— Coordination
' Kim [read a book], [gave it to Sandy], and [left].
- Substitution with a word
* Kim read [a very interesting book about grammari.
» Kim read [it].
- You can't do this, for example
' [Kim read] the book
» [It] the book
- See Bender #51

Context Free Grammar

- A finite set of rules licensing a
(possibly infinite) number of strings

- e.g., some rules
- [sentence] — [subject] [predicate]
- [subject] = [noun phrase]

- [noun phrase] — [determiner]?
[adjective]” [noun]

- [predicate] — [verb phrase] [adjunct]
- Rules are phrasal or terminal

— Phrasal rules form constituents in
a tree

- Terminal rules are parts of speech
and produce words

Chomsky formal
language hierarchy
refresher

regular grammar

context-free grammar

context-sensitive
grammar

Turing machine

Example

S — NPVP.

S — [JJNNS] VP .

S — [Human] NNS VP .

S — Human [languages] VP .

S — Human languages [VBP ADJP] .

S = Human languages [are] ADJP .

S = Human languages are [JJ SBAR] .

S = Human languages are [hard] SBAR .
S = Human languages are hard [VP] .

S = Human languages are hard [TO VP] .
S = Human languages are hard [to] VP .

S — Human languages are hard to [VB] .

S — Human languages are hard to [parse] .

S — Human languages are hard to parse .

NP

/N

JJ NNS

Human languages

TO VP

to

VB

parse

summary

- Formal language theory is a theory that does the
following:

- provides a compact representation of a language

- provides an account for how strings within a language
are generated

- It’s very useful for describing many simple languages
- It can also be applied to natural language

Outline

formal

language
theory

natural
language

parsing

37

Where we are

- We discussed formal language theory
- We showed how it might apply to human language
- But how do we get a computer to use it?
- Observe a sentence
— Infer the process / structure that produced it
- We need
" A way to learn that model

" An algorithm for finding the sequence of actions
under that model, most likely to have produced it

Treebanks

- Collections of natural text that are annotated according to
a particular syntactic theory

- Usually created by linguistic experts

- Ideally as large as possible

- Theories are usually coarsely divided into constituent/
phrase or dependency structure

Penn Treebank (1993

ABOUT
MEMBERS
COMMUNICATIONS

LANGUAGE RESOURCES v

Obtaining Data
Catalog
By Year
Top Ten Corpora
Projects
Search
Memberships
Data Scholarships
Tools
Papers
LR Wiki
DATA MANAGEMENT
COLLABORATIONS

Home » Language Resources > Data

Treebank-3

Item Name:
Author(s):

LDC Catalog No.:

ISBN:
ISLRN:

Member Year(s):

DCMI Type(s):
Data Source(s):
Project(s):
Application(s):
Language(s):
Language ID(s):
License(s):

Online
Documentation:

Licensing Instructions:

Citation:

Related Works:

Introduction

Treebank-3

Mitchell P. Marcus, Beatrice Santorini, Mary Ann Marcinkiewicz, Ann Taylor
LDC99T42

1-58563-163-9

141-282-691-413-2

1999

Text

telephone speech, newswire, microphone speech, transcribed speech, varied
TIDES, GALE

parsing, natural language processing, tagging

English

eng

LDC User Agreement for Non-Members

LDC99T42 Documents

Subscription & Standard Members, and Non-Members

Marcus, Mitchell, et al. Treebank-3 LDC99T42. Web Download. Philadelphia:
Linguistic Data Consortium, 1999.

View

This release contains the following Treebank-2 Material:

¢ One million words of 1989 Wall Street Journal material annotated in Treebank Il style.
¢ A small sample of ATIS-3 material annotated in Treebank Il style.
o Afully tagged version of the Brown Corpus.

and the following new material:

¢ Switchboard tagged, dysfluency-annotated, and parsed text

e Brown parsed text

The Treebank bracketing style is designed to allow the extraction of simple predicate/argument structure.
Over one million words of text are provided with this bracketing applied.

Nata

httos.//catalog.ldc.uper

The Penn Treebank

- Syntactic annotation of a million words of the 1989 Wall
Street Journal, plus other corpora (released in 1993)

- (Trivia: People often discuss “The Penn Treebank” when
the mean the WSJ portion of it)

- Contains 74 total tags: 36 parts of speech, 7 punctuation
tags, and 31 phrasal constituent tags, plus some relation
markings

- Was the foundation for an entire field of research and
applications for over twenty years

((S

(NP-SBJ
(NP (NNP Pierre) (NNP Vinken))
(,)
(ADJP
(NP (CE S years))
(JJ olc

()
(VP (MD wil
(VP (VB join)
(NP (DT the) (NN board))
(PP-CLR (IN as)
(NP (DT a) (JJ nonexecutive) (NN director)))
(NP-TMP (NNP Nov.) (CD 29))))

(--)))

Pierre Vinken, 61 years old, will join the board

as a nonexecutive director Nov. 29.

https.//commons.wikimedia.org/wiki/File:PierreVinken.jog

Parsing

- If the grammar has certain properties, we can efficiently
answer the first question (find the hidden structure) with a

parser
- Q1: is the sentence in the language of the parser?

- Q2: What is the structure above that sentence?

Algorithms

- The CKY algorithm for parsing with constituency
grammars

CKY algorithm

0S5 = oNP2 2VPs
0S5 = oNP1 1VPs

VP+s— VB PP
VP— ->VB3 sNPs
NP— NN NN PP— 5[N3 3NP5
NP= NN NP— DT NN
NN NN, VB VB, IN DT NN
Time flies like an arrow
0 1 2 3 4

Chart parsing tfor constituency grammars

-+ Maintains a chart of nonterminals spanning words, e.g.,
- NP over words 1..4 and 2..5
- VP over words 4..6 and 4..8

- etc

- Infer the existence of a span (A, i..j) if there exists a rule A
— B C and a k such that both (B, i..k) and (C, k..j) exist

- Build this chart from the bottom upward: the opposite
direction from generation

CKY algorithm

- How do we produce this chart? Cocke-Younger-Kasami (CYK/
CKY)

- Basic idea is to apply rules in a bottom-up fashion, applying all
rules, and (recursively) building larger constituents from
smaller ones

- Input: sentence of length N
for width in 2..N
for beginiin 1.{N - width}
j =i+ width
forsplitkin{i+ 1}.{ -1}
forall rulesA - B C
create iA; if iBk and «C;

Complexity analysis

- What is the running time of CKY
- as a function of input sentence length?
- as a function of the number of rules in the grammar?

CKY algorithm

- Parsing questions:
- Q1: is a given sentence in the language of the parser?
- Q2: What is the structure above that sentence?

- Termination: is there a chart entry at oSn?
- V string is in the language (Q1)

- Structures can be obtained by following backpointers in
dynamic programming chart (not covered today)

- Other technical details not covered today:

- The probability of each parse is the product of the rule
probabilities

- Ambiguities are resolved with these scores

Demos

- Berkeley Neural Parser: https://parser.kitaev.io
- Spacy dependency parser: https://explosion.ai/demos/
displacy

- (Dependency grammars—not covered today—use a
simplified representation that directly model relationship
between words)

https://parser.kitaev.io
https://explosion.ai/demos/displacy
https://explosion.ai/demos/displacy

Summary

formal

language
theory

provides a
framework for
reasoning
about
languages of
all kinds

natural

language

a real-world (if
messy)
application
area for
formal
language
theory

parsing

a means of
making text
useable
under formal
language
theory

51

