SYNTAX

Matt Post IntroHLT class 11 September 2025

Languages

GOOD

for i in range(args.N): print(i)

python program <u>BAD</u>

i in: i for range(print)

<html>

>

Lorem ipsum

</html>

HTML

ipsum </html> <h>

Lorem

<ptml>

http://google.com

URLs

gsd@ht//:ww

The crowd could not keep back gasps of admiration

language

not of could back gasps
The crowd admiration

What are the abstractions and tools that underlie all of these examples?

Today we will cover

math

formal language theory

abstractions for reasoning about structure

linguistics

natural Ianguage

applying structure to natural phenomena

engineering

parsing

making them usable by a computer

Goals for today

- After today, you should be able to
 - define a language
 - describe syntax both mathematically and linguistically
 - enumerate the formal language (Chomsky) hierarchy
 - provide a description of constituent grammars
 - sketch the algorithm for CKY parsing

Outline

formal language theory

natural language

parsing

Formal Language Theory

- Define a **language** to be a set of strings under some alphabet, Σ
 - $-\Sigma$ = a set of symbols (letters, words, numbers, etc)
 - string = a sequence of symbols from Σ
- e.g., the set of valid English sentences (where the "alphabet" is English words), or the set of valid Python programs
- Formal Language Theory provides a common framework for studying properties of these languages

Some terminology

- Σ^* ("sigma star") is the set of all strings in the vocabulary
- \cdot ϵ is the *empty string*
- A language $\mathscr L$ can be finite or infinite

Languages as sets

- $\Sigma = \{0,1,2,3,4,5,6,7,8,9,-,...\}$
- What do you think these languages describe (in words?)

$$\mathcal{L}_1 = \{0, 1, 2, 3, 4, 5, \dots\}$$

 $\mathcal{L}_2 = \{-12.4, 0, 142, 142.1, 142.01, 142.001, \dots\}$

Regular expression examples

- A more compact representation than explicit listing: regular expressions
- Notes:
 - . = match any character
 - | = "or"
 - [] = "choose one of these"
 - + = "one or more of the previous"
 - * = "zero or more of the previous"
- What do these languages describe (in words?)

$$\mathcal{L}_1 = .*$$

 $\mathcal{L}_2 = 0 \mid [1 - 9][0 - 9] *$

Generative descriptions of lang.

- A definition of languages as sets is not very useful
 - Why not?
- A better approach:
 - Develop a process that can describe how strings in a language are generated
 - New membership criteria:
 - **IN**: can be generated by this process
 - OUT: cannot be generated by this process

Generating from a language

- Imagine a process that repeatedly
 - selects a next symbol from the alphabet under some strategy
 - decides whether to terminate
- How can we formalize this?

Regular languages with rules

- The "regular expression" syntax is a shortcut representation
- We can describe the generative process more formally using a set of rules that are recursively applied

$$A \rightarrow Aa$$

 $A \rightarrow a$

- Rules have two types of symbols:
 - terminal symbols (lowercase, e.g., a) are normal vocabulary items
 - nonterminal symbols (uppercase, e.g., A) are recursively replaced until there are no more of them

Previous examples as rules

- Alphabet: $\Sigma = \{0,1,2,3,4,5,6,7,8,9\}$
- Language: $\mathcal{L}_1 = \Sigma^+$
- Generative rules: S → A
 - $A \rightarrow 0A$
 - $A \rightarrow 1A$
 - $A \rightarrow 2A$

. .

 $A \rightarrow 9A$

 $\cdot A \rightarrow \epsilon$

How can we modify this to prevent the empty string?

Previous examples as rules

- Alphabet: $\Sigma = \{0,1,2,3,4,5,6,7,8,9\}$
- Language: $\mathcal{L}_1 = \Sigma^+$
- Generative rules: S → A
 - $A \rightarrow 0B$
 - $A \rightarrow 1B$
 - $A \rightarrow 2B$

. . .

 $A \rightarrow 9B$

 $\cdot B \rightarrow \epsilon$

Formal definition of a language

- Definitions: consider the set $(\Sigma, N, S \in N, R)$, where
 - Σ is the *vocabulary* which is a finite set of *terminal symbols*
 - -N is a finite set of *nonterminals symbols*
 - $-S \in N$ is a special nonterminal called the *start symbol*
 - $\alpha, \beta,$ and γ are strings of zero or more terminal and nonterminal symbols
 - R is a set of *rules* of the form $\alpha N\beta \rightarrow \gamma$

Regular languages

- Definitions: consider the set $(\Sigma, N, S \in N, R)$, where
 - $-\Sigma$ is the *vocabulary* which is a finite set of *terminal symbols*
 - -N is a finite set of *nonterminals symbols*
 - $-S \in N$ is a special nonterminal called the *start symbol*
 - $-\alpha, \beta,$ and γ are *strings* of zero or more terminal and nonterminal symbols
 - R is a set of *rules* of the form $\alpha N\beta \rightarrow \gamma$

Туре	Rules	Name	Recognized by
3	A → aB	Regular	Regular expressions

 All the languages we created earlier (for example, the set of email addresses) can be described with such rules

Context-free languages

- Definitions: consider the set $(\Sigma, N, S \in N, R)$, where
 - $-\Sigma$ is the *vocabulary* which is a finite set of *terminal symbols*
 - -N is a finite set of *nonterminals symbols*
 - $-S \in N$ is a special nonterminal called the *start symbol*
 - $-\alpha, \beta,$ and γ are *strings* of zero or more terminal and nonterminal symbols
 - $_{-}$ R is a set of *rules* of the form $\alpha N\beta \rightarrow \gamma$

Туре	Rules	Name	Recognized by
2	$A \rightarrow \alpha$	Context-free	Pushdown automata

 This change might seem small, but it fundamentally alters the kinds of languages that can be generated

Palindromes

- "No sir, away, a papaya war is on!"
 - aibohphobia—the fear of palindromes
- "engage le jeu que je le gagne"
- Belphegor's prime: 1000000000000066600000000000001

Context-free and not regular

- $\Sigma = \{a, b, c, \dots, z\}$
- · Create a context-free language for \mathcal{L} , the set of palindromes
- S→A
 A→aAa
 A→bAb
 ...
 A→zAz
 A→€

Exercise

- Can you construct a grammar recognizing palindromes using the regular constraint on grammar rules?
 - Rules of the form A → Aa or A → aA
 - (Nonterminals must be on one side or the other)

Nonterminals as categories

- We can give meaning to the categories
- START→REPEAT

REPEAT → a REPEAT a

REPEAT → b REPEAT b

. . .

REPEAT → z REPEAT z

REPEAT $\rightarrow \epsilon$

REPEAT → a DONE a

REPEAT → b DONE b

- - -

REPEAT \rightarrow z DONE z

DONE $\rightarrow \epsilon$

The Chomsky Hierarchy

- Named after Noam Chomsky, the MIT linguist
- Different constraints on the rules lead to more powerful sets of languages that can be described
- More powerful languages are harder (meaning, more compute-intensive) to recognize

The Chomsky Hierarchy

- Definitions: consider the set $(\Sigma, N, S \in N, R)$, where
 - Σ is the *vocabulary* which is a finite set of *terminal symbols*
 - -N is a finite set of *nonterminals symbols*
 - $-S \in N$ is a special nonterminal called the *start symbol*
 - $-\alpha, \beta$, and γ are strings of zero or more terminal and nonterminal symbols
 - R is a set of *rules* of the form $\alpha N\beta \rightarrow \gamma$

Туре	Rules	Name	Recognized by	Complexity
3	A → aB	Regular	Regular expressions	$\mathcal{O}(n)$
2	$A \rightarrow \alpha$	Context-free	Pushdown automata	$\mathcal{O}(n^3)$
1	$\alpha A \beta \rightarrow \alpha \gamma \beta$	Context- sensitive	Linear-bounded Turing machine	$\mathcal{O}(2^n)$
0	$\alpha A \beta \rightarrow \gamma$	Recursively enumerable	Turing Machines	undecidable

Summary

- Given all strings under a vocabulary, a language can be thought of as a subset of those strings
- It is productive to formulate languages as the set of strings produced by a generative process
- We can generalize this discussion to make a connection between natural and other kinds of languages
- Consider, for example, computer programs, where the set of Python programs is the subset of strings that can be parsed by the Python interpreter

Outline

formal language theory

natural language

parsing

Linguistic fields of study

- Phonetics: sounds
- Phonology: sound systems
- Morphology: internal word structure
- Syntax: external word structure (sentences)
- Semantics: sentence meaning
- Pragmatics: contextualized meaning and communicative goals

Today's focus

Linguistic Fundamentals for Natural Language Processing

100 Essentials from Morphology and Syntax

Emily M. Bender

- Excellent book
- Organized into 100 minilectures
- PDF available for free via JHU library (along with tens of others in the series)
- https://tinyurl.com/ linguistic-fundamentals

Synthesis Lectures on Human Language Technologies

Graeme Hirst, Series Editor

What is syntax?

- A set of constraints on the possible sentences in the language
 - *A set of constraint on the possible sentence.
 - *Dipanjan had [a] question.
 - *You are on class.
- At a coarse level, we can divide all possible sequences of words into two groups: valid and invalid (or grammatical and ungrammatical)

Human judgments

- "Ungrammatical" = "not in the language"
- Proficient speakers make these judgments
- But we still want to try to model the process

Parts of speech

- No general agreement about the exact set of parts of speech
- From grammar school:
 - noun: a person, place, thing, or idea
 - verb: a word that shows action
 - preposition: a word that describes relationships to a noun
 - adjective: a word that describes a noun
 - adverb: a word that describes a verb or adjective
 - others: pronoun, conjunction, interjection

Phrases and Constituents

- Longer sequences of words can perform the same function as individual parts of speech:
 - I saw [a_{DT} kid_N]_{NP}
 - I saw [a kid playing basketball]_{NP}
 - I saw [a kid playing basketball alone on the court]_{NP}
- This gives rise to the idea of a phrasal constituent, which functions as a unit in relation to the rest of the sentence

Constituent tests

- How do you know if a phrase functions as a constituent?
- A few tests
 - Coordination
 - Kim [read a book], [gave it to Sandy], and [left].
 - Substitution with a word
 - Kim read [a very interesting book about grammar].
 - Kim read [it].
 - You can't do this, for example
 - [Kim read] the book
 - [It] the book
 - See Bender #51

Context Free Grammar

- A finite set of rules licensing a (possibly infinite) number of strings
- e.g., some rules
 - [sentence] → [subject] [predicate]
 - [subject] → [noun phrase]
 - [noun phrase] → [determiner]?[adjective]* [noun]
 - [predicate] → [verb phrase] [adjunct]
- Rules are phrasal or terminal
 - Phrasal rules form constituents in a tree
 - Terminal rules are parts of speech and produce words

Chomsky formal language hierarchy refresher

regular grammar

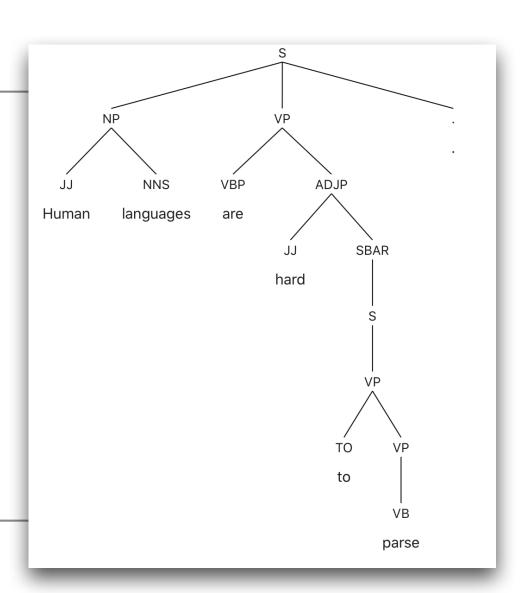
context-free grammar

context-sensitive grammar

Turing machine

Example

- $S \rightarrow NP VP$.
- $S \rightarrow [JJ NNS] VP$.
- $S \rightarrow [Human] NNS VP$.
- $S \rightarrow Human [languages] VP$.
- S → Human languages [VBP ADJP].
- S → Human languages [are] ADJP.
- S → Human languages are [JJ SBAR].
- S → Human languages are [hard] SBAR.
- S → Human languages are hard [VP].
- S → Human languages are hard [TO VP].
- S → Human languages are hard [to] VP.
- $S \rightarrow$ Human languages are hard to [VB].
- S → Human languages are hard to [parse].
- $S \rightarrow$ Human languages are hard to parse .



Summary

- Formal language theory is a theory that does the following:
 - provides a compact representation of a language
 - provides an account for how strings within a language are generated
- It's very useful for describing many simple languages
- It can also be applied to natural language

Outline

formal language theory

natural language

parsing

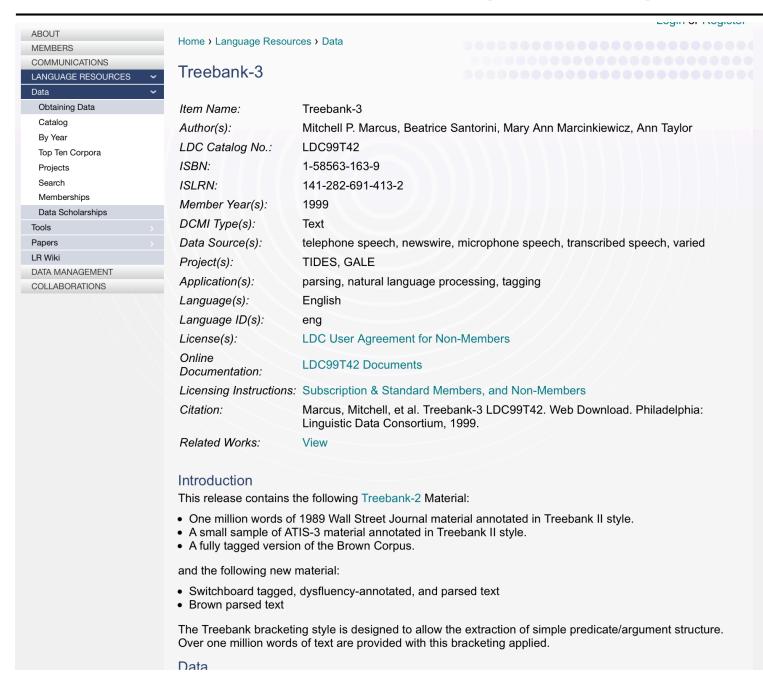
Where we are

- We discussed formal language theory
- We showed how it might apply to human language
- But how do we get a computer to use it?
 - Observe a sentence
 - *Infer* the process / structure that produced it
 - We need
 - A way to learn that model
 - An algorithm for finding the sequence of actions under that model, most likely to have produced it

Treebanks

- Collections of natural text that are annotated according to a particular syntactic theory
 - Usually created by linguistic experts
 - Ideally as large as possible
 - Theories are usually coarsely divided into constituent/ phrase or dependency structure

Penn Treebank (1993)



The Penn Treebank

- Syntactic annotation of a million words of the 1989 Wall Street Journal, plus other corpora (released in 1993)
 - (Trivia: People often discuss "The Penn Treebank" when the mean the WSJ portion of it)
- Contains 74 total tags: 36 parts of speech, 7 punctuation tags, and 31 phrasal constituent tags, plus some relation markings
- Was the foundation for an entire field of research and applications for over twenty years

```
( (S
  (NP-SBJ
   (NP (NNP Pierre) (NNP Vinken))
   (, ,)
   (ADJP
                    S years))
    (NP (CI
    (JJ old)
   (, ,)
  (VP (MD wil)
   (VP (VB join)
    (NP (DT the) (NN board))
    (PP-CLR (IN as)
     (NP (DT a) (JJ nonexecutive) (NN director) ))
    (NP-TMP (NNP Nov.) (CD 29))))
  (..))
```

Pierre Vinken, 61 years old, will join the board as a nonexecutive director Nov. 29.

Parsing

- If the grammar has certain properties, we can efficiently answer the first question (find the hidden structure) with a parser
 - Q1: is the sentence in the language of the parser?
 - Q2: What is the structure above that sentence?

Algorithms

 The CKY algorithm for parsing with constituency grammars

CKY algorithm

$$0S_5 \rightarrow 0NP_2 \ 2VP_5$$

$$0S_5 \rightarrow 0NP_1 \ 1VP_5$$

$$1VP_4 \rightarrow VB \ PP$$

$$VP \rightarrow 2VB_3 \ 3NP_5$$

$$PP \rightarrow 2IN_3 \ 3NP_5$$

$$PP \rightarrow 2IN_3 \ 3NP_5$$

$$NP \rightarrow NN$$

$$NP \rightarrow NN$$

$$NP \rightarrow NN$$

$$NN \qquad NN, VB \qquad VB, IN \qquad DT \qquad NN$$

$$Time \ flies \qquad like \qquad an \qquad arrow$$

$$0 \qquad 1 \qquad 2 \qquad 3 \qquad 4$$

5 45

Chart parsing for constituency grammars

- Maintains a chart of nonterminals spanning words, e.g.,
 - NP over words 1..4 and 2..5
 - VP over words 4..6 and 4..8
 - etc
- · Infer the existence of a span (A, i...j) if there exists a rule A
 - → B C and a k such that both (B, i..k) and (C, k..j) exist
- Build this chart from the bottom upward: the opposite direction from generation

CKY algorithm

- How do we produce this chart? Cocke-Younger-Kasami (CYK/ CKY)
- Basic idea is to apply rules in a bottom-up fashion, applying all rules, and (recursively) building larger constituents from smaller ones
- Input: sentence of length N for width in 2..N
 for begin i in 1..{N width}
 j = i + width
 for split k in {i + 1}..{j 1}
 for all rules A → B C
 create ¡Aj if ¡Bk and kCj

Complexity analysis

- What is the running time of CKY
 - as a function of input sentence length?
 - as a function of the number of rules in the grammar?

CKY algorithm

- Parsing questions:
 - Q1: is a given sentence in the language of the parser?
 - Q2: What is the structure above that sentence?
- Termination: is there a chart entry at ₀S_N?
 - - ✓ string is in the language (Q1)
 - Structures can be obtained by following backpointers in dynamic programming chart (not covered today)
- Other technical details not covered today:
 - The probability of each parse is the product of the rule probabilities
 - Ambiguities are resolved with these scores

Demos

- Berkeley Neural Parser: https://parser.kitaev.io
- Spacy dependency parser: https://explosion.ai/demos/displacy
 - (Dependency grammars—not covered today—use a simplified representation that directly model relationship between words)

Summary

formal language theory

natural language

parsing

provides a framework for reasoning about languages of all kinds

a real-world (if messy)
application
area for
formal
language
theory

a means of making text useable under formal language theory