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What is Information Retrieval?
Retrieve information from a storage 

based on user’s information need

(relevant)



Don’t we have Google?

Yes, but Google is not all.



4

What if I’m looking for the person?

Why asking me to read?
Why in a list?

Why not group the results?

Why not read my mind?



Google Search is just one implementation

Google trained us well! 
• Even faster? 
• Smarter? 
• Cross language? 



Hard Matching Problem

• Text to text
• Search in notes
• Cross language search
• Cross domain search

• Text to other modalities
• Image search
• Video search



Different Search Process

• Iterative search
• e.g., electronic discovery and systematic review

• Conversational search
• Alexa search

• Recommendation systems
• Implicit queries

• (Set Retrieval)



Core Problem

• Rank relevant document at top
• Do it fast

Query

Documents

Ranked List



Design Space

Effectiveness
• Definition of relevancy
• How to model relevancy

Efficiency
• How fast
• Fast at what stage



Agenda

• What is information retrieval?
• Retrieval Modeling and Pipeline

• Statistical and Neural

• Evaluation
• State of IR Research and active research problems



Retrieval Modeling and Pipeline

Modeling relevancy and do it fast



Three main modeling strategies

• Pointwise
• Pairwise
• Listwise

• And combinations of them

https://medium.com/vptech/learning-to-rank-at-veepee-
ed420fd828e5



Statistical Models
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score(D, Q) =  

For each query term

How often the term appear in the DHow important the term is x

score(D, Q) =  

For each query term

Term frequencyInverted document frequency x

BM25
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𝑙𝑜𝑔
𝑁

𝑛𝑡
× log 𝑓(𝑞𝑖 , 𝐷) + 1  



How to make it fast?

• “Fast” in responding to queries
• Better data structure
• Preprocess the data



Inverted Index



Inverted Index



Inverted Index



Two-Stage System

• Offline preprocessing and indexing
• Define retrieval unit
• Tokenization
• Build the inverted index

• Online query serving
• Traverse the inverted index and score it





Can we go beyond surface forms?

neural language models 



One Dense Vector 
Per Sequence

e.g., DPR

One Sparse Vector 
Per Sequence
e.g., SPLADE

Multiple Dense Vectors 
Per Sequence
e.g., ColBERT

Joint Encoder
e.g., monoBERT

Bi-Encoder Cross Encoder



Separate query and document processing

OfflineOnline Both Online



One Vector per Query, One Vector per Document

PLMQuery

PLMDocument

ɸ Score
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Nearest Vectors aka Neighbors

● Linear Search
○ Slow (scales linearly in size of document collection) 

● Approximate Methods (e.g., Product Quantization) ➙ ANN
○ Faster Search

● Runtime Efficiency vs Effectiveness

24



DPR Indexing and Retrieval

mPLM

Doc1
Doc2
Doc3

Docn

Re
tri

ev
al

PLMQuery
1. Doc3
2. Doc1
3. Doc2
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One Dense Vector 
Per Sequence

e.g., DPR

One Sparse Vector 
Per Sequence
e.g., SPLADE

Multiple Dense Vectors 
Per Sequence
e.g., ColBERT

Joint Encoder
e.g., monoBERT

Bi-Encoder Cross Encoder



One Vector per Term: MaxSim

Chinese Document term embedding

English Query term embeddingmary
瑪莉  (mary)

瑪莉雅 (maria)
lamb

羊肉 (mutton)

羔羊  (lamb)

羊 (sheep)

聖母
(our lady)

little

小 (small)

小 (little)

一隻 (one)只 (only)

a 許多 (many)

had

有 (had)
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MaxSim in Action -- ColBERT
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q1

q2

qn

PL
M

Eq1

Eq2

Eqn

Ed1 Ed2 Edm

PLM

d1 d2 dm

Eq1ET
d1  Eq1ET

d2

∑ Score

Query

Document



One Vector per term: Multi-stage Retrieval
In
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xin

g

PLMDoc
Doc

Doc
Doc

Re
tri

ev
al

Query PLM

Doc1

Doc2

Doc3

Docn
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1. Doc4
2. Doc3
3. Doc5

MaxSimStage 2

Use all token
embeddings

Doc3
Doc5
Doc4

Stage 1
ANN

Space Inefficient



Efficient PLAID Indexing Architecture
Re

tri
ev

al

English 
Query PLM

In
de

xin
g

Doc1

Doc2

Doc3

Docn
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1. Doc4
2. Doc3
3. Doc5

MaxSimStage 2

Decompress token
embeddings

through residuals

Doc3
Doc5
Doc4

Stage 1
ANN by retrieving 
closest clusters

K-means Clustering

t1 = centroid + residual1

residual1  = <1,0,0,0,0>

PLAID Index
Space 
Efficient





One Dense Vector 
Per Sequence

e.g., DPR

One Sparse Vector 
Per Sequence
e.g., SPLADE

Multiple Dense Vectors 
Per Sequence
e.g., ColBERT

Joint Encoder
e.g., monoBERT

Bi-Encoder Cross Encoder



High-dimensional Vector: Masked LM

33

Mary

a

[CLS]

had

[MASK]

lamb

PLM
Masked

LM

Head

0.1%

…

10%

…

1%

…

good

little

small

PLM Vocabulary



SPLADE
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PLM
Masked

LM

Head

`

season (0.2)

orioles (2.5)

playoff (1.9)

baltimore (1.2) 

berth (0.9)

Sparse
Pooling

Predicted
Vocabulary



SPLADE Search Pipeline
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One Dense Vector 
Per Sequence

e.g., DPR

One Sparse Vector 
Per Sequence
e.g., SPLADE

Multiple Dense Vectors 
Per Sequence
e.g., ColBERT

Joint Encoder
e.g., monoBERT

Bi-Encoder Cross Encoder



Cross-Encoder

Cross-Encoder 
with PLM

Query

Doc

0.9063
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Using Generative Models

Pradeep, Ronak, Rodrigo Nogueira, and Jimmy Lin. "The expando-mono-duo 
design pattern for text ranking with pretrained sequence-to-sequence 
models." arXiv preprint arXiv:2101.05667 (2021).

Generative 
PLM

e.g, T5

Query: What does Mary has 
Doc: Mary had a little lamb. 
Relevant: Yes

Not a number! 

39



Using Generative Models

Generative 
PLM

Query: What does Mary has 
Doc: Mary had a little lamb. 
Relevant: 

No (0.001)

`

Yes (0.08)

Yes
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Pradeep, Ronak, Rodrigo Nogueira, and Jimmy Lin. "The expando-mono-duo 
design pattern for text ranking with pretrained sequence-to-sequence 
models." arXiv preprint arXiv:2101.05667 (2021).



Using Generative Models

Generative 
PLM

Query: What does Mary has 
Doc: Mary had a little lamb. 
Relevant: 

No (0.001)

`

Yes (0.08)

0.52

Pointwise score
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Pradeep, Ronak, Rodrigo Nogueira, and Jimmy Lin. "The expando-mono-duo 
design pattern for text ranking with pretrained sequence-to-sequence 
models." arXiv preprint arXiv:2101.05667 (2021).



Using Generative Models

Generative 
PLM

Query: What does Mary has 
Doc0: JHU is in Baltimore
Doc1: Mary had a little lamb. 
Relevant: 

Pairwise score

No (0.02)

`

Yes (0.001)

0.49
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Pradeep, Ronak, Rodrigo Nogueira, and Jimmy Lin. "The expando-mono-duo 
design pattern for text ranking with pretrained sequence-to-sequence 
models." arXiv preprint arXiv:2101.05667 (2021).



One Dense Vector 
Per Sequence

e.g., DPR

One Sparse Vector 
Per Sequence
e.g., SPLADE

Multiple Dense Vectors 
Per Sequence
e.g., ColBERT

Joint Encoder
e.g., monoBERT

Bi-Encoder Cross Encoder



One Dense Vector 
Per Sequence

e.g., DPR

One Sparse Vector 
Per Sequence
e.g., SPLADE

Multiple Dense Vectors 
Per Sequence
e.g., ColBERT

Joint Encoder
e.g., monoBERT

Bi-Encoder Cross Encoder

More Effective

More Efficient



Retrieve-and-Rerank System Combinations

More Efficient 
Less Effective

More Effective 
Less Efficient Final Score

Higher 
Recall

Final 
objective
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Neural Retrieval System Pipeline
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Retrieval 
Model

Query

Documents

Indexing RetrievalTraining
Finetuning

Ranked List

Index



PLM to IR Model
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● Align the representation

● Model “relevancy”

Pretrained LM
(PLM) IR Model

Pretraining Retrieval Finetuning



Evaluation

Which system is better?



What is Information Retrieval?
Retrieve information from a storage 

based on user’s information need

(relevant)



Which system retrieve more 
relevant information?



Relevance

Judgments

Cranfield Paradigm Evaluation

Search Engine
Search Engine

Search Engine
Search Engine

Queries

Documents

Search Engine C

Search Engine A

Search Engine B
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Ranked List



Relevance

Judgments

Cranfield Paradigm Evaluation

Search Engine
Search Engine

Search Engine
Search Engine

Queries

Documents

Search Engine C

Search Engine A

Search Engine B
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Ranked List

Topics



Relevance

Judgments

Cranfield Paradigm Evaluation

Search Engine

One Query

Documents
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Ranked List

One Topic

Evaluation Metric 
Scoring



IR-Specific Issues

• Topics vs Queries
• Clear intent vs an expression of such intent

• Relevant vs related
• Fulfilling the information need or not

• Relevance Judgements vs Labels
• Opinion vs “fact”

• Ranked retrieval metrics
• Measuring the quality/effectiveness of a ranked list



IR Metrics 

• Effective Metrics
• Mean Average Precision
• Normalized Discounted Cumulative Gain
• Recall@k

• Efficiency Metrics
• Indexing time
• Index disk space
• Query latency (average search time per query)
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State of IR Research



Retrieval-
Augmented 
Generation 

• Is everything a RAG 
problem? 

• What is the right 
retrieval model/system 
for RAG? 

• IR going away? https://www.anthropic.com/news/contextual-retrieval



https://learn.microsoft.com/en-us/copilot/microsoft-365/microsoft-365-copilot-overview



Better Retrieval Models

• More effective
• Better/larger neural models
• Better architecture? 
• Under harder setup, e.g., scholar search, 

multilingual, cross-modal, etc
• More efficient

• Faster at query time
• Less resource footprint, e.g., memory, storage, 

compute, etc
• Other qualities

• Fairness, diversity, etc



Other Retrieval 
Problems

• Conversational
• Guessing intent, finding the “right” 

information to serve
• Iterative/interactive/human-in-the-

loop
• Rounds of interactions

• Generative 
• Returning a piece of text



Evaluation

• What to measure 
• and when would it fail

• How to measure
• Generative text? Citations? 

• “Better” evaluation collection
• Not necessarily larger
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