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The “source-channel” model for automatic
speech recognition (ASR)
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Hidden Markov models are popular as
acoustic models
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Dynamic programming is popular for
“decoding,” i.e. for hypothesis search
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The ASR Landscape in 2009
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 Commercial providers had proprietary algorithms and software

* Academic software tools were mostly good only for research
* Usually not scalable for deployment
e Often required licensing for commercial use

e Significant barriers to entry existed for start-ups and small(er) labs
* Algorithms were complex to understand and implement
 Significant “black art” beyond the algorithms themselves was needed



Kaldi was born in the Summer of 2009
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The cost of developing speech to text systems for new languages and domains is dominated by the need to

WORKSHOPS transcribe a large quantity of data. We aim to significantly reduce this cost.
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Kaldi today: A community of researchers
cooperatively advancing ASR

e C++ library, command line tools, several ASR recipes
* Freely available via GitHub (Apache 2.0 license)

* Top performance in open benchmark tests
* NIST OpenKWS 2014, IARPA ASpIRE 2015, NIST LoReHLT 2018, ..., MUCS 2021

* Widely adopted in academia and extensively used in industry
e 300+ citations in 2014 (based on Google Scholar data)
* 400+ citations in 2015, 600+ citations in 2016, 800+ citations in 2017, ...
e Used (& developed further) by several US and non-US companies

e Kaldi “trunk” maintained by Dan Povey @ xiaomi and Jan Trmal @ jhu
* Forks contain specializations by others (including other Hopkins researchers)



Staying ahead of the field: 2012-Today

* ASR technology is advancing very rapidly

 Amazon, Apple, Baidu, Facebook, Google, Microsoft, Tencent, ...

 Kaldi leads the field with innovations, big and small, ...
* From SGMMs to DNNs (2012)
* From English to “low resource” languages (2013, IARPA BABEL)
* Parallelization of DNN training (2014, Natural Gradient SGD)
* From close-talking to far-field recordings (2015, IARPA ASpIRE)
e Chain models: better, cheaper and faster (2016)
e Backstitch: adversarial training reinterpreted (2017)
 TDNN-F acoustic models (2018)
* GPU acceleration of Viterbi decoding (2019)

e ...and tries to keep up with advances made by others



A paper appeared in September 2011 ...
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Conversational Speech Transcription
Using Context-Dependent Deep Neural Networks

Frank Seide', Gang Li,' and Dong Yu*

!Microsoft Research Asia, Beijing, PR.C.
2Microsoft Research, Redmond, USA
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{fseide, d
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Phoneme Recognition: Neural Networks vs.

Hidden Markov Models

T. Hanazawa G. Hinton * K. Shikano
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So, atetot progress has been made since 1988
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Acoustic Modeling
with
Deep Neural Networks
for Hybrid ASR Systems

Repurposing Algorithms Developed for HMM-based Architectures



Composite HMM for “cat and hat”
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Composite HMM for “cat and hat”
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“Forward” Algorithm
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Phoneme Phoneme
HMMs Posterior Probabilities
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Language Modeling
with
(Recurrent) Neural Networks

Efforts to Get Further Away from GMM-HMM Architectures



Using Neural Networks to Estimate P(w,|h;)
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A paper appeared in September 2010 ...

INTERSPEECH 2010

Recurrent neural network based language model

Tomds§ Mikolov'2, Martin Karafidt', Lukds Burget', Jan “Honza” Cernocky', Sanjeev Khudanpur®

COGNITIVE SCIENCE 14, 179-211 (1990) 1Speech@FIT, Brno University of Technology, Czech Republic

2 Department of Electrical and Computer Engineering, Johns Hopkins University, USA
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Finding Structure in Time

Abstract :z;;:v_-_:-.;-_,. PR ()

JEFFREY L. ELMAN A new recurrent neural network based language model (RNN ] CONTEXT (t)
LM) with applications to speech recognition is presented. Re- I—I

University Of Cal’fornm' San D iego sults indicate that it is possible to obtain around 50% reduction

of perplexity by using mixture of several RNN LMs, compared
to a state of the art backoff language model. Speech recognition
experiments show around 18% reduction of word error rate on
the Wall Street Journal task when comparing models trained on
the same amount of data, and around 5% on the much harder
NIST RTOS task, even when the backoff model is trained on _ _
much more data than the RNN LM. We provide ample empiri- o
cal evidence to suggest that connectionist language models are
superior to standard n-gram techniques, except their high com-
putational (training) complexity.

Index Terms: language modeling, recurrent neural networks,
speech recognition
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A Simple RNN
Language Model
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Speech Recognition

without
the HMM “Backend”

Efforts to Get Away from GMM-HMM Architectures
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Calculating the CTC loss for “cat and hat” Calculating the gradient of the CTC loss
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| Composite HMM for “cat and hat”
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End-to-End Speech Recognition
using
Neural Networks with Attention

Efforts to Get Further Away from GMM-HMM Architectures
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A CNN+LSTM Architecture
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A Bidirectional LSTM Architecture (Deep Speech)
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I Decoder

Encoder Network

An Encoder-Decoder Architecture with Attention
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Summary + Q&A



