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AGENDA

Impact of Deep Learning on HLT

Intro to Deep Learning

What changed? Why recently?

Deep Learning in HLT

PyTorch




QUICK ASIDE

BLEU Scores

Modified n-gram precision metric for Machine Translation

0 — 100.0 (higher is better)

Reviewers generally like ~+1.0 gain over a baseline




IMPACT OF DEEP LEARNING
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CATS!
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Google's Artificial Brain Learns to Find Cat Videos

When computer scientists at Google's mysterious X lab built a neural network of 16,000 computer processors with one billion connections and let it
browse YouTube, it did what many web users might do -- it began to look for cats.

Neuroscientist Explains One Concept in 5 Levels of
Difficulty
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Fast and Robust Neural Network Joint Models for Statistical Machine
Translation

Jacob Devlin, Rabih Zbib, Zhongqiang Huang,
Thomas Lamar, Richard Schwartz, and John Makhoul
Raytheon BBN Technologies, 10 Moulton St, Cambridge, MA 02138, USA
{jdevlin, rzbib, zhuang, tlamar, schwartz, makhoul}@bbn .com

Abstract

Recent work has shown success in us-
ing neural network language models
(NNLMs) as features in MT systems.
Here, we present a novel formulation for
a neural network joint model (NNJM),
which augments the NNLM with a source
context window. Our model is purely lexi-
calized and can be integrated into any MT
decoder. We also present several varia-
tions of the NNJM which provide signif-
icant additive improvements.

Although the model is auite simole. it

1 Introduction

In recent years, neural network models have be-
come increasingly popular in NLP. Initially, these
models were primarily used to create n-gram neu-
ral network language models (NNLMs) for speech
recognition and machine translation (Bengio et al.,
2003; Schwenk, 2010). They have since been ex-
tended to translation modeling, parsing, and many
other NLP tasks.

In this paper we use a basic neural network ar-
chitecture and a lexicalized probability model to
create a powerful MT decoding feature. Specifi-
cally, we introduce a novel formulation for a neu-




IS NEURAL MACHINE TRANSLATION READY FOR
DEPLOYMENT?

* Junczys-Dowmunt et al., 2016

Il Pb-SMT
Il NMT12M | -

60

|

ar-en ar-es ar-fr ar-ru ar-zh en-ar en-es en-fr en-ru en-zh



IS NEURAL MACHINE TRANSLATION READY FOR
DEPLOYMENT?

* Junczys-Dowmunt et al., 2016

es-ar es-en es-fr es-ru es-zh fr-ar fr-en fr-es fr-ru fr-zh



IS NEURAL MACHINE TRANSLATION READY FOR
DEPLOYMENT?

* Junczys-Dowmunt et al., 2016
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DEEP LEARNING BACKGROUND

* Deep Learning is Neural Networks ....That are Deep!




SUPERVISED LEARNING

* Model: 6
* Input: X
* Output:Y

* Pp(Y[X)




SUPERVISED LEARNING (LANGUAGE ID)

* Model: 6
* Input: X (Hello my name is)

* Output:Y (English)

* Pp(Y[X)




SUPERVISED LEARNING (LANGUAGE ID)

* Model: 6
* Input: X (Hola, mi nombre es)

* Output:Y (Spanish)

* Pp(Y[X)




SUPERVISED LEARNING (LANGUAGE ID)

* Model: 6
* Input: X (Salut, je m’appelle)
* Output:Y (French)

* Pp(Y[X)




SUPERVISED LEARNING (LANGUAGE ID)

* Model: 6

* Input: X (Imanalla, nugap suti Murray kan)

* Output:Y (?)
* Py(Y]X)




SUPERVISED LEARNING (SPEECH RECOGNITION)

* Model: 6

* Input: X (+ )
* Output:Y (?)
* Py(Y]X)




SUPERVISED LEARNING (SPEECH RECOGNITION)

* Model: 6
* Input: X (+ )
* Output:Y (Hello World)

* Pp(Y[X)




SUPERVISED LEARNING (MACHINE TRANSLATION)

* Model: 6

* Input: X ( .Jlall Ls je )
* Output:Y (?)
* Py(Y]X)




SUPERVISED LEARNING (MACHINE TRANSLATION)

* Model: 6
* Input: X ( .Jlall Ls je )

* Output:Y (Hello World)

* Pp(Y[X)




CLASSIFICATION

One of the first tasks public thinks of

Sentiment Analysis

Speaker/Writer ID

Language ID

Phoneme Recognition




BINARY CLASSIFICATION




BINARY CLASSIFICATION

I

Hola Hello
Me




BINARY CLASSIFICATION
\

Hola Helle
Mie

Gato Yo N(Ca:




LINEAR MODELS
\

J
x9; +xU; + b > 0; English
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LINEAR MODELS
\

| I]
x9; +xU; + b > 0; English

x9; + xU; + b < 0; Spanish I:H:I@[I@ I:H:I@[”]@
MIQ

0Tx > 0; English
0Tx < 0; Spanish

@@%%@@ Yo N(Cat




PERCEPTRON

* Make it a probability YI-.\Z/alues
* P(y=English|x) = 1.0 if 87x > 0 |
* P(y=English|x) = 0.0if 67x < 0 08

0.6

04

0.2

-1.5 - -0.5 0 0.5 I 1.5




LOGISTIC REGRESSION

* Make it a probability YI-\Z/aIues
* P(y=English|x) = ¢ (67x) |
— —
© P(y=English|x) = — //
> Softer 06 /
- Differentiable 04/
/
————— o

-1.5 -l 0.5 0 0.5 | 1.5




LOGISTIC REGRESSION

Make it a probability

P(y=English|x) = ¢ (67x)

1
1407

P(y=English|x) =

Softer

Differentiable




2 NEURON FEED-FORWARD




2 Neuron Feed-Forward

Softmax . .




SOFTMAX

* Make the output a probability distribution

Zi

e

- o (z) =

VA




SOFTMAX

Make the output a probability distribution

1
1407

P(y=English|x) =

Zi

e

og(z) =

Training: Differentiable through it

Testing: Take the Max




DEEP




OTHER NON-LINEARITIES




OTHER NON-LINEARITIES

* A lot like sigmoid
* Range: (-1.0, 1.0)




OTHER NON-LINEARITIES

relu(x)=0;if x <0
relu(x)=x;if x = 0




TENSORS!




TENSORS!

DEPENDS ON DEFINITION!

Row: weights into a single neuron




TENSORS!

DEPENDS ON DEFINITION!

Row: weights into a single neuron

Cols: Number of neurons in layer




WHY NOW? (LAST 10YEARS)
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= MIEIEE BACKCHANNEL BUSINESS CULTURE GEAR IDEAS SCIENCE SECURITY SIGN IN SUBSCRIBE Q

® CORONAVIRUS HOW TO GET A COVID VACCINE BEST FACE MASKS COVID-18 FAD NEWSLETTER LATEST NEWS

Google's Artificial Brain Learns to Find Cat Videos

When computer scientists at Google's mysterious X lab built a neural network of 16,000 computer processors with one billion connections and let it
browse YouTube, it did what many web users might do -- it began to look for cats.

7

makes the human race strong. ' -~

g

Neuroscientist Explains One Concept in 5 Levels of
Difficulty
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Google's Artificial Brain Learns to Find Cat Videos

When computer scientists at Google's mysterious X lab built a neural networK of 16,000 computer processors with one billion connections and let it

browse YouTube, it did what many web users might do -- it began to look for cats:
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Neuroscientist Explains One Concept in 5 Levels of
Difficulty




CATS! GPUs!

= MIEIEE BACKCHANNEL BUSINESS CULTURE GEAR IDEAS SCIENCE SECURITY SIGN IN SUBSCRIBE Q
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Google's Artificial Brain Learns to Find Cat Videos

When computer scientists at Google's mysterious X lab built a neural networK of 16,000 computer processors with one billion connections and let it

browse YouTube, it did what many web users might do -- it began to look for cats:

J
¥

7

makes the human race strong. '
y

g

Neuroscientist Explains One Concept in 5 Levels of
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WHY NOW? (LAST 10YEARS)

* Murray and Chiang, 2015

* 5-gram Language Model ~28 Days CPU (Grid restrictions)

* Today ~Couple of hours GPU




WHY NOW? (LAST 10YEARS)

* Data availability

Global Information Storage Capacity

in optimally compressed bytes

1986 1993

ANALOG ; :

L6 embytes : ANALOG STORAGE

| — _"_ DIGITAL
DIGITAL —= STORAGE

0.02 exabytes ‘_

|
v

2002:
“beginning
of the digital age”
50%
% digital:
1%

3% 25%

Source: Hilbert, M., & Lopez, P. (2011}. The World's Technological Capacity to Store, Communicate, and

Compute Information. Science, 332(6025), 60 —65. http://www.martinhilbert.net/WorldinfoCapacity.html

94 %

2007 ANALOG

19 exabytes

- Paper, film, audiotape and vinyl: 6%

- Analogvideotapes (VHS, etc): 94 % ANALOG
- Portable media, flash drives: 2 %
- Portable hard disks:2.4 %

- CDs and minidisks:6.8%

DIGITAL @

- Computer servers and mainframes:8.9%

- Digital tape: 11.8 %

- DVD/Blu-ray: 22.8 % '

-PC harddisks:44.5%
123 billion gigabytes

- Others: < 1 % (incl. chip cards, memory cards, floppy dizks,
mabile phones, PDAs, cameras/camcorders, video games)

DIGITAL
280 exabytes



WHY NOW? (LAST 10YEARS)

Annual Size of the Global Datasphere 175 ZB

12022 2023 2024 202t Forbes, 2018




LANGUAGE MODELS

* Throwback to first week

* Predict the next word in a sequence




LANGUAGE MODELS

* Throwback to first week

* Predict the next word in a sequence




LANGUAGE MODELS

* Throwback to first week

* Predict the next word in a sequence

Johns Hopkins University was




LANGUAGE MODELS

* Historically: vocab,V
° n-gram language model was |V|"

* Data Sparsity issues (5-gram was common)

Johns Hopkins University was




RNN LMS

Johns Hopkins University was

| I | 1

1

|

| I | 1 |

<S> Johns Hopkins University was




RNN LMS

Johns Hopkins University we
I I @@@




BRNN

* Schuster and Paliwal, 1997

t-1 t t+1

Fig. 3. General structure of the bidirectional recurrent neural network (BRNN) shown unfolded in time for three time steps.




LSTMS

Long-Short Term Memory

Cell

Input Gate

Output Gate

Forget Gate

S. Hochreiter and J. Schmidhuber, 1997




LSTMS

* https://colah.github.io/posts/2015-08-Understanding-LSTMs/

& O, &

t t t
e N O N R
—>—) ® T > -
A lelel) A
—> > ->
&, J O\ y

@ &) &)

The repeating module in an LSTM contains four interacting layers.



BI-LSTM

* Graves et al.,2013

—bht

Fig. 1. Long Short-term Memory Cell

Outputs ce Yp—1 Ui Yisl - -
Backward Layer @ 0 @
Forward Layer ‘ “_._
Inputs e Tp i

Fig. 2. Bidirectional RNN




BI-LSTM 2 1

—bht

* Graves et al.,2013

Table 1. TIMIT Phoneme Recognition Results. ‘Epochs’ is
the number of passes through the training set before conver-

gence. ‘PER’ is the phoneme error rate on the core test set. Fig. 1. Long Short-term Memory Cell
Outputs ce Yp—1 Ui Yisl - -

NETWORK WEIGHTS EpPOCHS PER
CTC-3L-500H-TANH 3.7M 107 37.6%
CTC-1L-250H 0.8M 82 23.9% swssions < {5 ()
CTC-1L-622H 3.8M 87 23.0%
CTC-2L-250H 2.3M 55 21.0% romocorr - —o(7, )7 (7>
CTC-3L-421H-UNI 3.8M 115 19.6%
CTC-3L-250H 3.8M 124 18.6%
CTC-5L-250H 6.8M 150 18.4%
TRANS-3L-250H 4.3M 112 18.3%

PRETRANS-3L-250H  4.3M 144 17.7% Fig. 2. Bidirectional RNN




MACHINE TRANSLATION

* Source Sentence, f:“Yo tengo hambre”

* Target Sentence, e:“l am hungry”

* P(e|f) ........ Neural Network




MACHINE TRANSLATION

* Choetal,2014 Decoder

Encoder

Figure 1: An illustration of the proposed RNN
Encoder-Decoder.

i
ik
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MACHINE TRANSLATION

* Choetal,2014 Decoder

* WMT ‘14 En-Fr

Models BLEU
dev test
Baseline 30.64 | 33.30 C
RNN 31.20 | 33.87
CSLLM + RNN 31.48 | 34.64
X1 X Xt
Encoder

Figure 1: An illustration of the proposed RNN
Encoder-Decoder.



MACHINE TRANSLATION

* Sutskever et al.,2014

W X Y z <EOS>
T A T A A
e s > > - - >
T T T T | T | |
A B C <EOS> W X Y z

Figure 1: Our model reads an input sentence “ABC” and produces “WXYZ” as the output sentence. The
model stops making predictions after outputting the end-of-sentence token. Note that the LSTM reads the
input sentence in reverse, because doing so introduces many short term dependencies in the data that make the
optimization problem much easier.




MACHINE TRANSLATION

* Sutskever et al.,2014

* WMT ‘14 En-Fr

Method test BLEU score (ntst14)
Bahdanau et al. [2] 28.45
Baseline System [29] 33.30
Single forward LSTM, beam size 12 26.17
Single reversed LSTM, beam size 12 30.59
Ensemble of 5 reversed LSTMs, beam size 1 33.00
Ensemble of 2 reversed LSTMs, beam size 12 33.27
Ensemble of 5 reversed LSTMs, beam size 2 34.50

Ensemble of 5 reversed LSTMs, beam size 12

34.81

w X ¥ z <EOS>
T A T A A
—> - > > >
T 7y T Y X
<EOS> w X Y z

entence “ABC” and produces “WXYZ” as the output sentence. The
utputting the end-of-sentence token. Note that the LSTM reads the
so introduces many short term dependencies in the data that make the




ATTENTION

* Bahdanau et al,, 2015

R [T T o™ =P

N e « ] le— <R
h, =1 h,<1h h,

X % XK X

Figure 1: The graphical illus-
tration of the proposed model
trying to generate the ¢-th tar-
get word y; given a source
sentence (z1,Z2,...,2T).




ATTENTION

* Bahdanau et al,, 2015

* WMT ‘14 En-Fr

Model All No UNK®°
RNNencdec-30 | 13.93 24.19
RNNsearch-30 | 21.50 31.44
RNNencdec-50 | 17.82 26.71
RNNsearch-50 | 26.75 34.16
RNNsearch-50* | 28.45 36.15

Moses 33.30 35.63

X % XK X

Figure 1: The graphical illus-
tration of the proposed model
trying to generate the ¢-th tar-
get word y; given a source
sentence (z1, o, ..., xT).




ATTENTION

* Bahdanau et al,, 2015

3 0 T T T T T

)
—_
o
o
wm
-]
E : : Pt ‘ _\ :
m 10H — RNNsearch-50 T S e . \.'.;:_-‘_;.\_.__f ......... RERT
""" RNNsearch-30 |: : \". : Hf\' S
5H — - RNNenc-50 oo e ST §
--- RNNenc-30 | ; ; el .
0 I ] I ! I
0 10 20 30 40 50 60

Sentence length

R [T T o™ =P

<h_1 -~ B_Z - Fa -~ - F]_T
X G % Xr

Figure 1: The graphical illus-
tration of the proposed model
trying to generate the ¢-th tar-
get word y; given a source
sentence (z1,Z2,...,2T).




ATTENTION IS ALL YOU NEED

Probabilities

(e o) |
o Feed
* Vaswani et al., 2017 Forard

| Add & Norm z

s I ~
* Transformer ”&C’F&.T—ml Nt Hoad
ee Attention

Forward D) N x
—
Add & Norm

Nx
~—>{_Add & Norm | Mosked
Multi-Head Multi-Head
Attention Attention
t )

—— J U )
Positional D Positional
Encodin §% i

coding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 1: The Transformer - model architecture.




ATTENTION IS ALL YOU NEED

Probabilities

-
Add & Norm

Feed

* Vaswani et al., 2017 Forward

| Add & Norm z

P> 1 ~
GeiiE T Multi-Head

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the Fgrefgrd Sienieh

English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

7 J é Nx
BLEU Training Cost (FLOPs) Nx s S E

N

Model ~—>{_Add & Norm Masked

EN-DE EN-FR EN-DE EN-FR Multi-Head Multi-Head
ByteNet [18] 23.75 Attention Attention
Deep-Att + P : .0-1020 t _t

P + PosUnk [39] 39.2 " 1.0 1020 4 J L J

GNMT + RL [38] 24.6 39.92 2.3-10 1.4-10 N
ConvS2S [9] 25.16 4046  9.6-10® 1.5-10% Pl iy <6 ) Positiona
MOoE [32] 26.03  40.56 2.0-101? 1.2.10% neoding Encoding
Deep-Att + PosUnk Ensemble [39] 40.4 8.0 -10%0 Emgggéing En?blgggitng
GNMT + RL Ensemble [38] 26.30 41.16 1.8-10%2 1.1-102
ConvS2S Ensemble [9] 26.36 41.29 -1 1.9-10* o utout
Transformer (base model) 27.3 38.1 3.3 -1 npus (shiﬁuegtiigsht)
Transformer (big) 28.4 41.8 2.3-1019

Figure 1: The Transformer - model architecture.




BERT

* Devlin etal.,2018

* Bidirectional Encoder Representations from Transformers

* Masked Language Model




BERT

Johns Hopkins University was



BERT

Johns Hoplkins University was founded in the year eighteen seventy six .



BERT

Johns! Hopl«ins was founded in the year eighteen SiXC .

a1

Johns Hopkins_was founded in the year eighteen -six :



BERT

ﬁ Mask LM Mask LM \ /@WD Start/End Spm
* & & * o
e e T - e ) s T -
...... ...
P EEEEREREE »
BERT . . .... . 4 B BERT
Ees || By | - Ex Eer || Ei | - Ey Eias E, Ex Elser) ES ... Ev
- B S " — E BN s L »

—G
. . &

I—F—,

l_'_l

(o) (o)) .

(=]

Masked Sentence A Question

Masked Sentence B
*
Unlabeled Sentence A and B Pair

Pre-training

Paragraph
*

Question Answer Pair

NN /

Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architec-
tures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize
models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned. [CLS] is a special
symbol added in front of every input example, and [SEP] is a special separator token (e.g. separating ques-
tions/answers).

Fine-Tuning




GPT-3

* Brown et al., 2020

* Auto-Regressive (Looks to previous context)




GPT-3

Total Compute Used During Training

10000

1000

100
| II
| -I II
» @ @ 2 N &
69 »‘ <& b>

Training Petaflop/s-days

o

N4 R 2
) Qﬁh R

@ v \%
& ¥ A
» ‘\:b qu, >

& & i & C; & .
P 2 of 2 o [ & F
A G G M & 4 A % g oY : : < e
Q‘ N ‘\’b A A ‘\% A7 A7 Q N Al Q A’
& & & & P c & & & ¢
sy (s}

Figure 2.2: Total compute used during training. Based on the analysis in Scaling Laws For Neural Language Models
[KMH " 20] we train much larger models on many fewer tokens than is typical. As a consequence, although GPT-3 3B
is almost 10x larger than RoOBERTa-Large (355M params), both models took roughly 50 petaflop/s-days of compute
during pre-training. Methodology for these calculations can be found in Appendix D.




GPT-3

- WMT ‘14 MT

- SacreBLEU (proper eval) Setting En—Fr

» Trained only on English SOTA (Supervised)  45.6“
XLM [LCI19] 33.4

MASS [STQ " 19] 375
mBART [LGG " 20] i

GPT-3 Zero-Shot 25.2
GPT-3 One-Shot 28.3
GPT-3 Few-Shot 32.6
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