EN. 601.467/667
Introduction to Human Language
Technology

Deep Learning ||

Shinji Watanabe

Today’s agenda

* Basics of (deep) neural network
* How to integrate DNN with HMM

* Recurrent neural network
* Language modeling

* Attention based encoder-decoder
* Machine translation or speech recognition

Deep neural network

Output HMM state or phoneme
* Very large combination of linear classifiers 30 ~ 10,000 units

a 1 u w N

OOO0O0O00 s=j

§€ (00000000
~2g2 (00000000

£ (000000 00]

Speech features
~50 to ~1000 dim

Feed-forward neural networks

» Affine transformation and non-linear activation function (sigmoid
function)

hiY = o(WWo, + b))

* Apply the above transformation L times

hY) = s(WOR!D 4 p0)

* Softmax operation to get the probability distribution

{p(s: = jlog)} /-, = softmax(WE R~ 4 p1))

Linear operation

e Transforms D~V -dimensional input to D output
f(ht=1) = wORE-1) 4 pO
e WO e RPVxDU™V . inaar transformation matrix
« b® e RPY: bias vector

 Derivatives

azjwijhj+bi ..
T = 6(i,1")

. 6(21 Wijhj'l'bi) _ 5(1 l’)h
-)]!

aWi/j/

DNN model size

* Mainly determined by the number of dimensions
(units) D and the number of layers L

' 000000
a% o Wide Which one makes

(00000000 the model larger?
How much?

AR I

Sigmoid function

* Sigmoid function

1
o) = 1+e %

* Convert the domain from R to [0, 1]
* Elementwise sigmoid function:

1 1 b
U(X) - 1 4+ e X — 1 —T
e + e~ %d d—1

* No trainable parameter in general

* Derivative
, 9o(x) _

9 = 5(0)(1 - 0(x)

Sigmoid function cont’d

* 0 (x)
*0'(x) =o(x)(1 ~a(x))

Softmax function

* Softmax function
. el
p(j|h) = [softmax(h)|, = Z;.le -
* Convert the domain from R/ to [0, 1]/ (make a multinomial dist. = classification)
» Satisfy the sum to one condition, i.e., 2. ;-; p(j|h) = 1

e | = 2:sigmoid function

e Derivative
« For i = j: 22U — 4 (i1h) (1 — p(j|h))
. Fori#j: p“f) _p(ilh) p(j|h)

e Or we can wrlte as pa(}Jll.) = p(j1h)(6(i,j) —p(ilh)) :6(i,j): Kronecker’s delta

Why it is used for the probability distribution?

h;

'1h) = [softmax(h)|. = ¢
plill) = boftmax(b)], = =7

What functions/operations we can use and
cannot use?

* Most of elementary functions
* +,—%,+,log(),exp(),sin(),cos(),tan()
* The function/operations that we cannot take a derivative, including
some discrete operation

* argmax,,p(WW|0): Basic ASR operation, but we cannot take a derivative....
* Discretization

Objective function design

* We usually use the cross entropy as an objective function
Cor(Odnn) = Z CE[p™(s:)|p(st|0t, Oann)]
_ Z Zpref) log p(s¢|0¢, Odnn)]
— —225 (s¢,8¢)log p(s¢|log, Odnn)]
r s
— _ Zlogp(§t\0t, Odnn)]
:

* Since the Viterbi sequence is a hard assignment, the summation over states is
simplified

Other objective functions

* Square error
|href _ hlz
* We could also use p norm, e.g., L1 norm

* Binary cross entropy

CBinary(@dnn) — = Z 1ng(§t’0t> @dnn)]

Y logathy)

* Again this is a special case of the cross entropy when the number of classes is
two

Building blocks

Softmax activation

Sigmoid activation

Linear
transformation

+,—,exp(),log(), etc.

Output: s; € {1, ...,J}

Input: 0, € RP

14

Building blocks

Output: s; € {1, ...,J}

T

Linear

transformation

Input: 0, € RP

15

Building blocks

Output: s; € {1, ...,J}

A

Linear
transformation

Sigmoid activation

Linear
transformation

Input: 0, € RP

16

Building blocks

Softmax activation

Sigmoid activation

Linear
transformation

+,—,exp(),log(), etc.

Output: s; € {1, ...,J}

Input: 0, € RP

17

How to optimize?
Gradient decent and their variants

* Take a derivative and update parameters with this derivative

0
@(new) _ @(old) . C O .
dnn dnn pa@dnn CE(d)(_)dlm:(_)(lold)
e Chain rule
0 B 0 39 ! /
55100 = 228 £(5(0)) = £(6(0))5'©)

* Learning rate p

Chain rule
e Chain rule
5 (00) = 5L 2% 1(9(6)) = £'(9(6)5'0)

* For example
* f(9(8)) = a(ax + b) where 6 = {a, b}

* f(x) =0(x)
cg(x)=ax+b ——
, 0f(g(0) _ do(y)d(ax+b) _ B _ B
@b 9y 8b c(¥)(1—0(y)) = o(ax + b)(1 — a(ax + b))
. 9fg6) _

Jda

Deep neural network: nested function

* Chain rule to get a derivative recursively

e Each transformation (Affine, sigmoid, and softmax) has analytical derivatives
and we just combine these derivatives

* We can obtain the derivative from the back propagation algorithm

ey Sigmoid activation A
transformation g transformation

21

Minibatch processing

* Batch processin new 0 0
P 5 o) =LY _ Ccr(Odnn)
 Slow convergence 0Odnn

* Effective computation where
CCE(@dnn) — Z log p(gtlot’ @dnn)

(old)
dnn

@dnn:

* Online processing
* Fast convergence
* Very inefficient computation

. . . eold Whole data » @newl
* Minibatch processing (batch)
* Something between batch and online
processing Split the whole data into minibatch

eold ﬁgnewlﬁ @new2 ﬁ @news3
2

How to set p?

1) — (7)
et =@ —p 'Agrad

» Stochastic Gradient Decent (SGD)

e Use a constant value (hyper-parameter)

* Can have some heuristic tuning (e.g., p < 0.5 X p when the validation loss started to
be degraded. Then the decay factor becomes another a hyperparameter)

 Adam, AdaDelta, RMSProp, etc.

* Use current or previous gradient information adaptively update
(A(T) A(T_l))
P grad’ —'grad ’ "™

* Still has hyperparameters to make a balance between current and previous gradient
information

* Choice of an appropriate optimizer and its hyperparameters is critical

Difficulties of training

* Blue: accuracy of training data (higher is better)

* Orange: accuracy of validation data (higher is better)

epoch vs acc

0 4 8 12 16 20 24 28

0 20 40 60 80

epoch

24

Today’s agenda

* How to integrate DNN with HMM

Speech recognition pipeline

G ONW T UW

GOW Z T UW

“l want to go to

Johns Hopkins campus”
Feature Acoustic Language
extraction modeling Lexicon mogelifg
(HMM)

“go .to”

“go tWO”

(19 »

go too

“goes £0” arggvnaxzp(OlL)p(L\W)p(W)
“goes two”

“goes too”

p(O|L) p(LIW) p(W)

Feed-forward neural network for acoustic
mode

Output HMM state

* Basic problem p(s;|0¢) 30 ~ 10,000 units
* 5¢: HMM state or phoneme a i u w N
* 0,: speech feature vector 00000000
e t:data sample £
, , " © © O O O 9O
* Configurations S o i
* Input features z= @9 01\@ © 9
« Context expansion _EJ § © © 0 O O O
* Output class | 22 @o 01‘@ oXe)
* Softmax function ~ 3
* Training criterion © © © O
* Number of layers AR A,
 Number of hidden states Mmm
¢ Type of non-linear activations |nput Speech features

Log mel filterbank

+ 11 context frames
27

Input feature

e GMM/HMM formulation

* Lot of conditional independence assumption and Markov assumption
* Many of our trials are how to break these assumptions

* In GMM, we always have to care about the correlation
* Delta, linear discriminant analysis, semi-tied covariance

* In DNN, we don’t have to care © ()T
t—r
« We can simply concatenate .
the left and right contexts, @ _ |,
and just throw it! t
04

Output

* Phoneme or HMM state ID is used

* We need to have a pair data of output and input data at frame ¢t
* First use the Viterbi alignment to obtain the state sequence

S={4t=1,--,T} = argmax p(S, O|O 4 1nm /hmm)
S
* Then, we get the input and output pair {5, 0:} for all ¢

* Make acoustic model as a multiclass classification problem by
predicting the all HMM state ID given the observation

* Not consider any constraint in this stage (e.g., left to right, which is handled
by an HMM during recognition)

How to integrate DNN with HMM

e Bottleneck feature
* DNN/HMM hybrid

Bottleneck feature

* Train DNN, but one layer having a
narrow layer

e Use a hidden state vector for
GMM/HMM

* Nonlinear feature extraction with
discriminative abilities

e Can combine with existing
GMM/HMM

Bottleneck layer

Output HMM state
1,000 ~ 10,000 units

a i u w N

bt 4 t ¢t

[OOOOEDOOO]
© © © © © O

© O 01\@ O O
© O 01\@ O O

© © © O
VNS

Input speech features

Log mel filterbank
+ 11 context frames

31

DNN/HMM hybrid

* How to make it fit to the HMM framework?
* Use the Bayes rule to convert the posterior to the likelihood

p(o¢|st) — p(s¢|ot, Odnn)/p(5t)

« p(st) is obtained by the maximum likelihood (unigram count)

* Need a modification in the Viterbi algorithm during recognition

Today’s agenda

* Recurrent neural network
* Language modeling

Recurrent neural network

* Basic problem
« HMM state (or phoneme) or speech feature is a sequence

S1,82, -+, St
01,0, ...,0¢
* |t’s better to consider context (e.g., previous input) to predict the probability

of s;
p(scloe) = p(se|oq, 02, ..., 0¢)

* Recurrent neural network (RNN) can handle such problems

Recurrent neural network (Elman type)

* Vanilla RNN: We ignore the bias term for simplicity

ve =0 (W['%])

Recurrent neural network (Elman type)

Y1 Y2 Y3 Ya Ys
’
36

e Vanilla RNN

Recurrent neural network (Elman type)

e Vanilla RNN

Y6

Ys

Yt1

Possibly consider long-range effect (but longer weaker)
no future context

37

Recurrent neural network (Elman type) "™

e Vanilla RNN

Y6

Ys

We can compute the posterior distribution p(s;|04, 05, ..., 0;)

38

Bidirectional RNN

Y2 Y3 Ya Ys Ye

We can compute the posterior distribution p(s;|0¢, 0441, ...,)

39

Bidirectional RNN

oYoojofolo
Ho3C
- 2o %@@?@9@? o

Y\HHHH

646644

We can compute the posterior distribution p(s;|041,05, ..., 04,0441, ...,)

Long short-term memory RNN

* Keep two states

* Normal recurrent state: y,
* Memory cell: c,

Ci1

—

Y1

LSTM
block

b

Yt

Operations w/o
trainable parameters

LSTM block

Operations w/
trainable parameters

1L

o) [tanh_

Linear Linear Linear

Ye-1 Y

43

LSTM block

Ci—1

Yi—1

Linear

()

Linear

Linear

(<)

* Cell state keeps the history
information
1. It will be forgotten
« 2. New information from x, will be
added

3. The cell information will be
outputted as y,

y:

* "will be” function is implemented
by a gate function [0, 1] through
the sigmoid activation

44

tanh and sigmoid activations

* sigmoid
* Convert the domain from R to [0, 1]

* Used as a gating (weight the state vector
(information))

llf Y (T(Zt)

e tanh

e Convert the domain from R to
* Allow negative and positive values

eX —e™*

L1

tanh(x) =

eX 4 e %

LSTM block

Ct-1 ’:‘

o] (o} [tanh]

Linear Linear Linear

Yi-1 concat

Linear

(<)

* Cell state keeps the history
information

1. It will be forgotten

Ct

y:

t

8forget — O (Wforget [Y}t{—l] + bforget)

Ct—1 & 8forget

46

LSTM block

* Cell state keeps the history

information
cts () « 2. New information from x, will be
added
(X)
(o] Lo] (o]
Linear Linear Linear Linear
Yt-1 \
Yi—1
X 8input — 0 (Winput [X, + binput

tanh (chll [y;:1] + bcell) ® ginput

LSTM block

* Cell state keeps the history

information
cts () « 2. New information from x, will be
added
(X)
(o] Lo] (o]
Linear Linear Linear Linear
Yt-1 \
Yi—1
X 8input — 0 (Winput [X, + binput

tanh (chll [y;:1] + bcell) ® ginput

LSTM block

Ct-1 ’:‘

(o (0
Linear Linear
Ye-1

* Cell state keeps the history

information

added

(<)

(o)

Linear Linear

y:

Ct =Ct—1 & Sforget + tanh (chll [

Yi-1
Xt

« 2. New information from x, will be

] + bcell) ® ginput

49

LSTM block

Ct-1 ’:‘

Lo | Lo |
Linear Linear Linear
Ye-1

Linear

(<)

* Cell state keeps the history
information

Ct

3. The cell information will be
outputted as y,

y:

Soutput = 0 (Woutput [yj(;ll + boutput)

Yt = tanh(ct) X Soutput

50

LSTM block summary

e 3 gating functions

8forget = 0 (Wforget [yizll + bforget)

Ci—1 Ct

t—1
(X) Sinput = 0 (Winput [yx] + binput)
(o] (o] i

Linear Linear Linear

Yi-1

Ye goutput = 0 <Woutput !Y}t(;ll + boutPUt>

X e Cell undate

Ct =C—1® Sforget + tanh (chll [Y):l] + bcell) 029 ginput

* Hidden state update

Yt = ta'nh(ct) 03¢ Zoutput

51

LSTM RNN

X 1] + bCGll) %Y ginput
 LSTM

Y6

Ys
Yt1

Possibly consider to keep the above initial information dependency by
Sforget — 1 and Sinput — Qatt > 1 52

RNN can be used for both
acoustic and language models

« HMM/DNN Acoustic model * Language model
p(stlol'OZJ ---;Ot) p(wi|W1'W21 ""Wi—l)

T T @?????

166464 555555

Speech recognition pipeline

G ONW T UW

GOW Z T UW

“l want to go to

Johns Hopkins campus”
Feature Acoustic Language
extraction modeling Lexicon modeling
(HMM)

“go .to”

“go tWO”

(19 »

go too

cages £0” argvrélaxzp(OlL)p(LIW)p(W)
“goes two”

“goes too”

p(O|L) p(LIW) p(W)

Today’s agenda

e Attention mechanism

Attention based encoder-decoder

e let C = (cj e Ulj =1,...,]), beacharacter sequence
e U : set of characters

* Let 0 = (0, € RP|t =1, ...,T), be a sequence of D dimensional
feature vectors

A

C = argmax. p(C|0)

* Problem: T and J are different, and we cannot use normal neural
networks

* Sequence to sequence is a solution to deal with it

Alignment problem

want

ShadaaniL

Attention mechanism

Vv; has an explicit dependency

p(CIO) — np(cjlcl:j—l'vj) for character ¢;
J

Obtain the context vector

T

_ /
Vj —Zajtht

t=1
Compute the assignment probability for each output j from a neural network

aj={a|t=1..,T}eRT,0<a; <1,X_ a;=1
aj; is obtained by using a neural network

We can represent an alignment
problem as a differentiable
function

62

Normal arrow:
high probability
Dashed arrow:
low probability

63

- var el
Seal - Sea
= -~ _ P .
-~ “su ~s -
~. . ~— -
-~ - - -1
e s - “ew
* - - -
s - - “eae
Ss TS .. -
s - - .~
- -~ -~
~ - -

HOOOLOO O

- -

~ -

- - % L A
) ‘ ‘ @I .‘~ .~~

Normal arrow:
high probability
Dashed arrow:
low probability

64

- -
- ~ea
-~ ~—.
- ol N

M - -a “ean
o e o e ‘ ‘ ‘. b - .
— -
N . 1 ; -
| I .

) -

- - L ~ H
- - - ’ L "

-d %
L=22ER
® e -
e L -
et em e . P
= wrt e’ e P
L de=aTar] ’ 4
- - - .
- - - - - L L
i ri - -
- - - . -
.- e A Sa® L ,
o . B :]
.- S s T
L b .
- - -,
-

-
- - ¢
- e N

- ’

- <t B |
ae” - - e = .
I—- i]

-
~

Normal arrow:
high probabilit
Dashed arrow:
low probability

65

Summary of today’s talk

 Basics of deep neural network
* Input, output, function block, back propagation, optimization

 Recurrent neural network
* Now we can handle a sequence (Sq, Sy, ...), (W, W5, ...), (01,05, ...)

* Integrate deep neural network for speech recognition
* GMM/HMM - DNN/HMM or RNN/HMM
* RNN language model

e Attention based encoder-decoder

* Machine translation and speech recognition have different lengths of input
and output.

e Attention mechanism to deal with the different lengths

