

João Sedoc

jsedoc@nyu.edu

New York University

Department of Technology, Operations, and Statistics

Chatbots are Ubiquitous: Personal Agents, Games, Education, Business & Medicine

Lots of Tools

https://docs.google.com/spreadsheets/d/1RgG-dRS42EHIG7QdJOTg2ZO587KutTTPeUfyxVKoIn8/edit#gid=0

Motivation - Lots of Chat

Others

Artificial Intelligence

- Can robots understand language?
- Can robots actually think?
- Not clear definition of intelligence or how to measure it!

- The Turing Test (1950)
- Indirect assessment of intelligent behaviour

(Image adapted from: <u>http://www.clubic.com/mag/culture/actualite-751397-imitation-game-alan-turing-pere-informatique.html</u>)

Al with Al conversations: Cleverbot (Carpenter, 2011)

Challenges for Artificial Intelligence

- Knowledge Representation
 - about learning, storing and retrieving relevant information about the world and one's previous experiences
- Commonsense reasoning*
 - about using world
 knowledge for interpreting,
 explaining and predicting
 daily life events and
 outcomes

Challenges for Conversational Agents

From Huang et al., 2019, "Challenges in Building Intelligent Open-Domain Systems"

Spoke Dialog System Architecture

Two Types of Systems

- 1. Chatbots
- 2. Goal-based (Dialog agents)
 - SIRI, interfaces to cars, robots, ...
 - Booking flights, restaurants, or question answering

Social Chat is Natural in Dialog Systems

Analysis is done from 100 sessions randomly

sampled from the log of Microsoft Rinna, a

commercial chatbot with 6M+ users in Japan.

Source: Wu & Yan, Deep Chit-Chat: Deep Learning for ChatBots Tutorial EMNLP 2018

Chatbot Architectures

Rule-based

Pattern-action rules (Eliza)
 + a mental model (Parry)

Corpus-based (from large chat corpus)

- 2. Information Retrieval
- 3. Neural network encoder-decoder

Eliza pattern/transform rules (0 YOU 0 ME) [pattern] → (WHAT MAKES YOU THINK I 3 YOU) [transform]

0 means Kleene * The 3 is the constituent # in pattern

You hate me WHAT MAKES YOU THINK I HATE YOU

http://psych.fullerton.edu/mbirnbaum/psych101/Eliza.htm

Personality in chatbots: Eliza and Parry

Parry's persona

- 28-year-old single man, post office clerk
- no siblings and lives alone
- sensitive about his physical appearance, his family, his religion, his education and the topic of sex.
- hobbies are movies and gambling on horseracing,
- recently attacked a bookie, claiming the bookie did not pay off in a bet.
- afterwards worried about possible underworld retaliation
- eager to tell his story to non-threating listeners.

Chatbot Architectures

Rule-based

Pattern-action rules (Eliza)
 + a mental model (Parry)

Corpus-based (from large chat corpus)

- 2. Information Retrieval
- 3. Neural network encoder-decoder

Information Retrieval based Chatbots

Idea: Mine conversations of human chats or human-machine chats Microblogs: Twitter or Weibo (微博) Movie dialogs

- Cleverbot (Carpenter 2017 http://www.cleverbot.com)
- Microsoft Xiaolce
- Microsoft Tay

Two IR-based Chatbot Architectures

- 1. Return the response to the most similar turn
 - Take user's turn (q) and find a (tf-idf) similar turn t in the corpus C

q = "do you like Doctor Who"

t' = "do you like Doctor Strangelove"

• Grab whatever the response was to *t*.

$$r = response\left(\operatorname*{argmax}_{t \in C} \frac{q^T t}{||q||t||} \right) \quad \text{Yes, so funny}$$

2. Return the most similar turn

$$r = \operatorname*{argmax}_{t \in C} \frac{q^T t}{||q||t||}$$

Do you like Doctor Strangelove

Deep Semantic Similarity Model

Chatbot Architectures

Rule-based

Pattern-action rules (Eliza)
 + a mental model (Parry)

Corpus-based (from large chat corpus)

- 2. Information Retrieval
- 3. Neural network encoder-decoder

Neural Network Encoder-Decoder Generative Models

Response Generation Systems

- End-to-end systems.
- Learn from "raw" dialogue data (e.g. OpenSubtitles).
- No semantic or pragmatic annotation required.
- Mainly successful in open-domain, non-task oriented systems.

Neural Conversation Model (NCM) VS Rule-Based Model (Cleverbot)

User: are you a follower or a leader ? CleverBot: no !! NCM: i 'm a leader .

Vinyals and Le 2015 "A Neural Conversation Model"

Image borrowed from <u>farizrahman4u/seq2seq</u>

Neural Network Language Models (NNLMs)

Feed-forward NNLM

Microsoft Translator

Neural Network Language Models (NNLMs)

Feed-forward NNLM

Recurrent NNLM

Sentence Encoder

LSTM Encoder

LSTM Decoder

Sutskever et al. 2014

"Sequence to Sequence Learning with Neural Networks"

Image borrowed from <u>farizrahman4u/seq2seq</u>

LSTM Encoder

LSTM Decoder

Vinyals and Le 2015 "A Neural Conversation Model"

Image borrowed from <u>farizrahman4u/seq2seq</u>

LSTM Encoder

LSTM Decoder

$$1/|\mathcal{S}| \sum_{(T,S)\in\mathcal{S}} \log p(T|S)$$

S = Source T = Target

$$\hat{T} = \arg\max_{T} p(T|S)$$

LSTM Encoder

LSTM Decoder

$$1/|\mathcal{S}| \sum_{(T,S)\in\mathcal{S}} \log p(T|S)$$

S = Source T = Target

$$\hat{T} = \arg\max_{T} p(T|S)$$

Neural Conversational Models

LSTM Encoder

LSTM Decoder

Sequence-to-sequence (Seq2Seq), the probability of the next utterance,

$$P(T \mid S) = P(u_{t+1} \mid u_t) = \prod_{i=1}^{N_t} P(x_{t+1,i} \mid x_{t+1,i-1}, \dots, x_{t+1,1}, f(u_t)),$$

Hierarchical Sequence to Sequence Model

Sordoni, Yoshua Bengio, Aaron Courville, and Joelle Pineau. 2015. Building End-To-End Dialogue Systems Using Generative Hierarchical Neural Network Models.

Neural Conversational Models

Sequence-to-sequence (Seq2Seq), the probability of the next utterance,

$$P(T \mid S) = P(u_{t+1} \mid u_t) = \prod_{i=1}^{N_t} P(x_{t+1,i} \mid x_{t+1,i-1}, \dots, x_{t+1,1}, f(u_t)),$$

an utterance at turn t is defined as $u_t = x_{t,1}, x_{t,2}, \ldots, x_{t,N_t}$

Uninteresting, Bland, and Safe Responses

How was your weekend?

I don't know.

What did you do?

I don't understand what you are talking about.

This is getting boring...

Yes that's what I'm saying.

Uninteresting, Bland, and Safe Responses

p(target|source)

I don't know.

I don't understand...

That's what I'm saying

Common MLE objective (maximum likelihood)

(whatever the user says)

Mutual information objective:

Response Diversity Promotion

• Knowledge grounding – knowledge bases

• Knowledge grounding - personalization

• Knowledge grounding – conversational history

• Persona

Chatbot with Emotion CAiRE: An End-to-End Empathetic Chatbot

https://arxiv.org/pdf/1907.12108v1.pdf

Chatbots: pro and con

- Pro:
 - Fun
 - Applications to counseling
 - Good for narrow, scriptable applications
- Cons:
 - They don't really understand
 - Rule-based chatbots are expensive and brittle
 - IR-based chatbots can only mirror training data
 - The case of Microsoft Tay
 - (or, Garbage-in, Garbage-out)
 - Generative chatbot are hard to control (more later...)

Two Types of Systems

- 1. Chatbots
- 2. Goal-based (Dialog agents)
 - SIRI, interfaces to cars, robots, ...
 - Booking flights, restaurants, or question answering

Goal-based (Dialog agents) Task-Oriented

What kinds of problems?

Chitchat (social bot)

"I am smart"	Turing Test ("I" talk like a human)	
"I have a question"	Information consumption	
"I need to get this done"	Task completion	
"What should I do?"	Decision support	

Task Representation and NLU

"Show me flights from Edinburgh to London on Tuesday."

```
SHOW:
      FLIGHTS:
             ORIGIN:
                    CITY: Edinburgh
                    DATE: Tuesday
                    TIME: ?
             DEST:
                    CITY: London
                    DATE: ?
                    TIME: ?
```

Slot Filling Dialog

- Domain: movie, restaurant, flight, ...
- **Slot**: information to be filled in before completing a task • For Movie-Bot: movie-name, theater, number-of-tickets, price, ...
- Intent (dialog act):

 Inspired by speech act theory (communication as action) request, confirm, inform, thank-you, ...

 \odot Some may take parameters:

thank-you(), request(price), inform(price=\$10)

"Is Kungfu Panda the movie you are looking for?"

confirm(moviename="kungfu panda")

Dialog Engineering as Finite State Automata

Dialog State Tracking

https://rasa.com/docs/core/architecture/

Reinforcement Learning

Bellmann optimality equation (1952), see [Sutton and Barto, 1998].

The case of Microsoft Tay

- Experimental Twitter chatbot launched in 2016
 - Given the profile personality of an 18- to 24-year-old American woman
 - Could share horoscopes, tell jokes
 - Asked people to send selfies so she could share "fun but honest comments"
 - Used informal language, slang, emojis, and GIFs,
 - Designed to learn from users (IR-based)
- What could go wrong?

The case of Microsoft Tay

@ReynTheo HITLER DID NOTHING WRONG!

The case of Microsoft Tay

- Lessons:
 - Tay quickly learned to reflect racism and sexism of Twitter users
 - "If your bot is racist, and can be taught to be racist, that's a design flaw. That's bad design, and that's on you." Caroline Sinders (2016).

Gina Neff and Peter Nagy 2016. Talking to Bots: Symbiotic Agency and the Case of Tay. *International Journal of Communication* 10(2016), 4915–4931

Evaluation

Evaluation

Slot Error Rate for a Sentence
 # of inserted/deleted/subsituted slots
 # of total reference slots for sentence

2. End-to-end evaluation (Task Success)

Evaluation of Goal (Task) vs Chatbot (Non-Task)

Task-based

- Human
 - End-of-task subjective task success
 - End-of-task ratings
- Automatic
 - Objective task success (Rieser, Keizer, Lemon, 2014)
 - Automatic estimates of User Satisfaction, (Rieser & Lemon, LREC 2008)

Non-task Based

- Human
 - Turn-based appropriateness (WOCHAT)
 - Turn-based pairwise (Li et al. 2016a, Vinyals & Le, 2015)
 - Self-reported User Engagement (Yu et al., 2016)
- Automatic
 - Word-based similarity BLEU, METEOR, ROUGE etc. (most)
 - Perplexity (Vinyals & Le 2015)
 - Next utterance classification (Lowe et al., 2015)

Current Approaches

- Human evaluation
 - Expert judges (WOCHAT, Alexa)
 - Crowd-sourced (non-expert) judgments (DBDC)
- Automated evaluation
 - Adapt metrics from other fields (e.g. BLEU, PP)

References for Automatic Evaluation

Why Are We Worried about Evaluation?

Tournaments in machine learning and machine translation led to large advances

Amazon Alexa Prize – largely infeasible for academic scale

Current Automatic Metrics Weakly Correlate with Human Judgements

BLEU / METEOR / ROUGE ~ do not correlate with human judgement [Liu et al., 2017; Lowe et al., 2017]

Dialog Evaluation Metrics are an Active Area of Research

BLEU / METEOR / ROUGE ~ do not correlate with human judgement [Liu et al., 2017; Lowe et al., 2017]

Sentence embedding based metrics

ADEM [Lowe, et al., 2017] RUBER [Toa, et al., 2017] Greedy word embeddings [Liu et al.,2017]

Human evaluation is still the gold standard

Interactive Evaluation of Chatbots Requires a Lot of Data == Expensive

amazonmechanical turk	Your Account HITs Qualifications 68,033 HITs available now
Find HITS Containing	All HITs HITs Available To You HITs Assigned To You for which you are qualified that pay at least \$ 0.00
Task Description	You need to finish at least 4 chat turns , after which you can click the "Done" button to end the chat. You can track your character description on the left. Please try to speak to the other person as if you are the character assigned. Do not trivially copy the character descriptions into the message.
In this task, you will chat with another user playing the part of a given character. For example, your given character could be:	PERSON_2: hi my name is carl and i like country music.
I am a vegetarian. I like swimming. My father used to work for Ford. My favorite band is Maroon5. I got a new job last month, which is about advertising design. Chat with the other user naturally and try to get to know each other, i.e. both ask questions and answer questions of your chat partner while sticking to your given character.	PERSON_1: hey carl! i'm more of a punk fan myself PERSON_2: oh nice. i like to listen to folk.
Your assigned character is: i like watching movies. i work part time in a warehouse. i like punk music. i like pizza and burgers.	PERSON_1: what do you do for work? i work at a warehouse PERSON_2: i do not work anymore. i retired and moved to the countryside 5 years ago.
i enjoy cruising.	wow that sounds nice! what do you do for fun? Send

Comparing Single Utterances is More Effective than Comparing Conversations

Before starting we will show you an example.

For example, you may be given the conversation:

hey, what's up? hey, want to go to the movies tonight?

Your task is to choose the most appropriate response:

A: sure that sounds great! what movie do you want to see? B: i know that was hilarious!

Response A is clearly a better answer, as it specifically addresses the question asked in the context.

Ethical Issues

Privacy

Privacy: Training on User Data

- Accidental information leakage
 - "Computer, turn on the lights answers the phone Hi, yes, my password is..."
- Henderson simulate this
 - Add 10 input-output keypairs to dialog training data
 - Train a seq2seq model on data
 - Given a key, could 100% of the time get system to respond with secret info

Peter Henderson, Koustuv Sinha, Nicolas Angelard-Gontier, Nan Rosemary Ke, Genevieve Fried, Ryan Lowe, and Joelle Pineau. 2018. Ethical Challenges in Data-Driven Dialogue Systems. In 2018 AAAI/ACM Conference on AI, Ethics, and Society (AIES '18),

Safety

- Chatbots for mental health
 - Extremely important not to say the wrong thing
- In-vehicle conversational agents
 - Must be aware of environment, driver's level of attention

Peter Henderson, Koustuv Sinha, Nicolas Angelard-Gontier, Nan Rosemary Ke, Genevieve Fried, Ryan Lowe, and Joelle Pineau. 2018. Ethical Challenges in Data-Driven Dialogue Systems. In 2018 AAAI/ACM Conference on AI, Ethics, and Society (AIES '18),

Female Conversational Agents

- Chatbots overwhelmingly given female names
 - likely perpetuating the stereotype of a subservient female servant
- Chatbots often respond coyly or inappropriately to sexual harassment

Xiaoice 2014,China

Rinna 2015, Japan

Zo

2016, US

Ruuh 2017, India

Rinna 2017, Indonesia

Bias in Training Datasets

- Henderson *et al.* ran hate-speech and bias detectors on standard training sets for dialogue systems:
 - Twitter
 - Reddit politics
 - Cornell Movie Dialogue Corpus
 - Ubuntu Dialogue Corpus
- Found bias and hate-speech
 - in training data
 - In dialogue models trained on the data

Peter Henderson, Koustuv Sinha, Nicolas Angelard-Gontier, Nan Rosemary Ke, Genevieve Fried, Ryan Lowe, and Joelle Pineau. 2018. Ethical Challenges in Data-Driven Dialogue Systems. In 2018 AAAI/ACM Conference on AI, Ethics, and Society (AIES '18),