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Downstream users of NLP/ML (“knowledge workers™)

=~

Medicine

» Concerned with specific domains, esoteric
questions

» Need to gather and structure targeted data

+ Explore and reason over those structures

Journalism

» Find and present a coherent, interesting
narrative

+ Wide range of technical abilities 3
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Why might computational intelligence help humanists?

Scholars are capable of deep, focused reasoning, but...
» have baggage from centuries of received wisdom

» are often deeply invested in supporting/refuting a
conclusion

* not possible to attend evenly to data and hypotheses

Al has limited capacity for abstract reasoning, but...
+ Easier to avoid bias towards a particular conclusion
» Can uniformly process data and explore hypothesis-spaces

» May produce well-formed probabilities, well-specified
representations
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Broad goals for collaboration

Minimal disruption to existing practice

* Humanists can keep working directly with primary sources
as they always have

« Computational scholars can develop and swap in new
architectures and techniques

“Sustainability”
» Can’t manage dozens of bespoke collaborations
» Need to focus on the boundaries: data in, hypotheses out
« Start with simple model that’s easily expanded



Starcoder: A neural ensemble for
humanities research
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Observation: spreadsheets are everywhere

owner_name | owner_job | owner.age | car_make | car_price | dealer_.name
John Lawyer 23 Honda 25000 Crazy Ray’s
Jane Doctor 31 Ford 35000 Crazy Ray’s

Entities with properties and relationships
» Property-type (e.g. text, category, number, image, location...)
» An Entity-type is a coherent bundle of potential properties (e.g. an
owner has a name, job, and age)

» A Relationship-type is a predicate with a specific interpretation that
might link entities of the appropriate entity-types (e.g. owner_of, sold_by)



Graph view of the same data
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Humanist describes their domain in a schema

owner_name | owner_job | owner.age | car_make | car_price | dealer_-name
John Lawyer 23 Honda 25000 Crazy Ray’s
Jane Doctor 31 Ford 35000 Crazy Ray’s
{
"properties” : {
“owner_age” : {"type” : "scalar”, "meaning” : "human.age”},
}
“entity_types” : {
“owner” : [”owner.name”, “owner_job”, ...]
b
“relationships” : {
“owned_by” : {
“source_entity_type” : “car”,
"target-entity_type” : “owner”
b
}
}



Schema combined with spreadsheet/XML/etc generates

JSON entities

[
{"type” : “owner”, ”name” : “John”, “age” : 23,
"job” : “Lawyer”, 7id” : 0},
{"type” : “owner”, "name” : "Jane”, “age” : 31,
"job” : ”Doctor”, ”id” : 1},
{"type” : ”"dealer”, “dealer.name” : ”Crazy Ray’s”,
"id” 2},
{"type” : “car”, "make” : "Honda”, ”price” : 25000,
owned_by” : 0, "sold_by” : 2},
{"type” : ”car”, "make” : ”"Ford”, "price” : 35000,
owned_by” : 1, ”"sold_by” : 2}
]

10



Design a model-generator that matches the schema



Building-blocks for the model

Encoder, decoder, and autoencoder mechanisms
Capture the entities and fields

Graph convolutional mechanism
Capture the relationships
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Building-blocks for the model

Encoder, decoder, and autoencoder mechanisms
Capture the entities and fields

Graph convolutional mechanism
Capture the relationships

Starcoder, from the Kleene-closure (asterisk/wildcard)

12



Intro to encoders/decoders/autoencoders
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Encoders and decoders are often paired
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If the goal is to reconstruct the input, it’s an autoencoder
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Summary of coder mechanisms

* An encoder transforms data into a fixed-length
representation

+ A decoder takes a fixed-length representation and
generates data

« An autoencoder is an encoder and decoder working
together to preserve data through a bottleneck

17



On to graph convolutions. ..
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Normal 1D CNN

Grid (image,
text ...)
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Normal 1D CNN
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text...)
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Normal 1D CNN
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Graph convolutional network (GCN)

Graph nodes
(e.g. entities)
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Graph convolutional network (GCN)
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Graph convolutional network (GCN)
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Graph convolutional network (GCN)
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Summary of graph-convolutional mechanism

» Extends CNNs from grids to graphs
* Information can pass along edges

» Each layer allows nodes to see one further “hop”

20



Modeling relational data

* Encoders, decoders, autoencoders
» Graph convolutional mechanism

+ Combine these to match the data being modeled

21
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Training is a bit involved ...

* Random field dropout
» Graph component subselection
» Ways to combine loss functions

23



How can we use a trained model?

Bottleneck (embedding) similarity
« Compute distance between two entities
« Find flat or hierarchical clusters of entities

Field generation
» Generate likely value of missing field
* Detect an improbable value of a present field
» Observe response of one field to another

24



Example: The post-Atlantic slave
trade




Shipping manifests
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Shipping manifests
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Shipping manifests
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Shipping manifests

L4V CLEHRANGE, Pt o Sty AR
FHanifest of Slaves, (0, b0 QAT e 5,

NAMES. | x| aem
bt  Fal 20
2 et e 2t
cclnr — A Zo
L7 & Zo.

7}%%4, ok |

[

S journey
X date
¢w 1832/9?4
1832/09/24

25



Fugitive notices
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Fugitive notices

revrvary ak y |_(sagiea
[
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Fugitive notices
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Fugitive notices
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Some numbers

» 45k manifest entries spanning five cities
11k fugitive notices from 70 gazettes

* Not big data, but thousands of studies like this at a
research university!

27



Difficulties with data in the wild
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Difficulties with data in the wild

e Unnormalized

» People/places/things recorded many times
» “What'’s the age/height/sex distribution of escapees?”

* Noisy
» Vessel type: Bark, Barke, BArque, Barque, Barques
 Slave name: “Nelly’?, Nelly’s child”, “not visible”

» Missing and underspecified entities

» Majority of slaves have no last name
» Can't tell if two “John”s are the same person

28



What might a historian want to do with this data?

 Follow one slave throughout their life
» Group owners according to the nature of their workforce

* Map out trade “ecosystems” of sellers, shippers, owners,
etc

e Reconstruct slave families when there are no last names

* Determine what drove valuation in transactions and
rewards

29



Entities, field types, and relations

Data

slave_name Jim
Slave_age 20
owner_name Jane
owner_sex F
vessel_name Uncas
vessel_type  Brig
voyage_date 6/2/1823

voyage_dest 29.9,90.0
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Entities, field types, and relations
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Entities, field types, and relations

Text
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Entities, field types, and relations

More complex fields
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Entities, field types, and relations

Entities
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Entities, field types, and relations

Entities

Slave_name Jim
slave_age 20
owner_name Jane
owner_sex F
vessel_name Uncas
vessel_type  Brig
voyage_date 6/2/1823

voyage_dest 29.9,90.0
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Entities, field types, and relations

Slave-to-owner

slave_name Ji
slave_age 20
owner_name Jan

owner_sex
vessel_name Uncas
vessel_type  Brig

voyage_date 6/2/1823
voyage_dest 29.9,90.0

30



Entities, field types, and relations

Vessel-to-voyage, slave-to-voyage

slave_name
slave_age
owner_name
owner_sex
vessel_name
vessel_type

voyage_date
voyage_dest 29.9,90.0

30



Entities, field types, and relations

slave_name Ji
slave_age 20
owner_name Jan

owner_sex F /\
vessel_name Uncas Row 1
vessel_type Brig

voyage_date 6/2/1823
voyage_dest 29.9,90.0
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One graph

NG
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Train Starcoder...
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Looking at the most-similar pairs by entity-type, some trends

emerge:

Mistranscriptions
Baltiomre < Baltimore

William Wiliams <= William Williams

Semantically-equivalent variants
George Y. Kelso < Kelso & Ferguson

New Orleans & Louisiana

Same slave transported multiple times'
Louisa, F, 16yo < Louisa, F, 17yo
Waters, F, 14yo < Waters, F, 15y0
Kesiah, F, 20yo <« Kesiah, F, 22yo
Taylor, F, 15y0 < Taylor, F, 16yo

"Many more instances of e.g. “John” following this superficial pattern

33



Ongoing work




Benefits of defining these APIs

» Scaling: easy to add new studies

* Research: new architectures to implement and import

* Visualization: auto-generate figures based on schemas

* Interaction: well-defined interface to explore ML output

* Remains grounded in the particular scholarly domain

34



Entertaining America: pre-Vaudeville theater

Data
 Derived from local newspaper ads
* Actors, troupes, towns, performances

» Geo-coded town maps

Questions/Goals
* Location of performances (within a town)

» How performances are chosen and described

35



Chaucer’s (and Gower’s) Metrical Voice

Data

» Poetry (e.g. Canterbury Tales) with (partial) stress
annotations

* Entities are lines, stanzas, chapters, tales

Questions/Goals

* Train Starcoder as words2stresses, lines2rhymes
+ Stresses as features for authorship

* Does the traditional scansion obscure interesting
properties of the text?
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Financial and demographic history

Studies
 Tax records of Medieval Paris
* Employment in early modern London
» Economy of the Caribbean Colonies

Questions/Goals

 Impetus to treat dates and coordinates as first-class field
types

» Differential look at economic policies
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Cuneiform in the Ancient Near East

Traditionally, inscriptions are grouped by physical
object-type

» We also have geographic location, transcription, ruler . ..
What is the relationship between these properties?

Is the traditional view a useful distinction, and how?
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Compositional forces on foundational cultural texts

Hebrew Bible sources timeline (Jewish Canon)
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Some familiar NLP tasks

Language ID
» Communication network
» Users, messages, and languages
» Capture how multi-lingual users tweet and follow

Sentiment analysis
+ Parse trees
» Words (leaves), nodes (constituents), polarities

» Capture how sentiment composes

Also, compare with GraphSAGE, KB embedding
techniques, etc

40
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