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Background: Working with humanists

Starcoder: A neural ensemble for humanities research

Example: The post-Atlantic slave trade

Ongoing work
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Background: Working with
humanists



Downstream users of NLP/ML (“knowledge workers”)

Finance Military

Medicine

Journalism

• Concerned with specific domains, esoteric
questions

• Need to gather and structure targeted data

• Explore and reason over those structures

• Find and present a coherent, interesting
narrative

• Wide range of technical abilitiesHumanist scholars
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Why might computational intelligence help humanists?

Scholars are capable of deep, focused reasoning, but . . .

• have baggage from centuries of received wisdom

• are often deeply invested in supporting/refuting a
conclusion

• not possible to attend evenly to data and hypotheses

AI has limited capacity for abstract reasoning, but . . .

• Easier to avoid bias towards a particular conclusion

• Can uniformly process data and explore hypothesis-spaces

• May produce well-formed probabilities, well-specified
representations
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Two broad categories of “help”

Supervised, focused tasks (“I can’t label/transcribe/etc all
this data!”)

• Starts with careful task definition

• Requires (maybe lots of) example pairs (datum,
label/transcription)

• OCR, translation, any sort of predefined categorization,
annotation

Unsupervised, exploratory (“What’s interesting about this
data?”)

• Starts with careful, unbiased representations

• No specific task, minimal bias and annotation cost

• Anomaly detection, topic models, clustering, intrinsic graph
metrics
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Broad goals for collaboration

Minimal disruption to existing practice

• Humanists can keep working directly with primary sources
as they always have

• Computational scholars can develop and swap in new
architectures and techniques

“Sustainability”

• Can’t manage dozens of bespoke collaborations

• Need to focus on the boundaries: data in, hypotheses out

• Start with simple model that’s easily expanded
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Starcoder: A neural ensemble for
humanities research



Observation: spreadsheets are everywhere

owner name owner job owner age car make car price dealer name
John Lawyer 23 Honda 25000 Crazy Ray’s
Jane Doctor 31 Ford 35000 Crazy Ray’s
. . . . . . . . . . . . . . . . . .

Entities with properties and relationships

• Property-type (e.g. text, category, number, image, location. . . )

• An Entity-type is a coherent bundle of potential properties (e.g. an
owner has a name, job, and age)

• A Relationship-type is a predicate with a specific interpretation that
might link entities of the appropriate entity-types (e.g. owner of, sold by)
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Graph view of the same data

John

23

Lawyer

Jane

31

Doctor

Crazy Ray’s

25000

Honda

35000

Ford
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Humanist describes their domain in a schema

owner name owner job owner age car make car price dealer name
John Lawyer 23 Honda 25000 Crazy Ray’s
Jane Doctor 31 Ford 35000 Crazy Ray’s
. . . . . . . . . . . . . . . . . .
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Humanist describes their domain in a schema

owner name owner job owner age car make car price dealer name
John Lawyer 23 Honda 25000 Crazy Ray’s
Jane Doctor 31 Ford 35000 Crazy Ray’s
. . . . . . . . . . . . . . . . . .

{
” p r o p e r t i e s ” : {

” owner age ” : {” type ” : ” sca la r ” , ” meaning ” : ” human age ”} ,
. . .

} ,
” e n t i t y t y p e s ” : {

” owner ” : [ ” owner name ” , ” owner job ” , . . . ]
. . .

} ,
” r e l a t i o n s h i p s ” : {

” owned by ” : {
” s o u r c e e n t i t y t y p e ” : ” car ” ,
” t a r g e t e n t i t y t y p e ” : ” owner ”

} ,
. . .

}
}
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Schema combined with spreadsheet/XML/etc generates
JSON entities

[
{ ” type ” : ” owner ” , ”name” : ” John ” , ” age ” : 23 ,

” job ” : ” Lawyer ” , ” i d ” : 0} ,
{ ” type ” : ” owner ” , ”name” : ” Jane ” , ” age ” : 31 ,

” job ” : ” Doctor ” , ” i d ” : 1} ,
{ ” type ” : ” dea ler ” , ” dealer name ” : ” Crazy Ray ’ s ” ,

” i d ” : 2} ,
{ ” type ” : ” car ” , ”make” : ” Honda ” , ” p r i ce ” : 25000 ,

” owned by ” : 0 , ” so ld by ” : 2} ,
{ ” type ” : ” car ” , ”make” : ” Ford ” , ” p r i ce ” : 35000 ,

” owned by ” : 1 , ” so ld by ” : 2}
]
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Design a model-generator that matches the schema



Building-blocks for the model

Encoder, decoder, and autoencoder mechanisms
Capture the entities and fields

Graph convolutional mechanism
Capture the relationships

Starcoder, from the Kleene-closure (asterisk/wildcard)
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Intro to encoders/decoders/autoencoders

13



Feed-forward network

Hidden
layers

Some
input
data

Task

Classification,
regression,
generation,

some combo . . .

Bottleneck
(embedding)
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Encoder

Hidden
layers

Some
input
data

Task

Classification,
regression,
generation,

some combo . . .

Bottleneck
(embedding)
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Decoder

Hidden
layers

Some
output
data
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Encoders and decoders are often paired

These
are the
same

Cliff
NotesStudies Recites
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If the goal is to reconstruct the input, it’s an autoencoder

These
are the
same

Cliff
NotesStudies Recites
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Summary of coder mechanisms

• An encoder transforms data into a fixed-length
representation

• A decoder takes a fixed-length representation and
generates data

• An autoencoder is an encoder and decoder working
together to preserve data through a bottleneck

17



On to graph convolutions. . .
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Normal 1D CNN

Grid (image,
text . . . )

Each
position

incorporates
its “receptive

field”

Repeat
process,

expand field

Graph nodes
(e.g. entities)

Adjacent
nodes

(related
entities)

Each node
incorporates
its neighbors

Info spreads
according
to graph
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Graph convolutional network (GCN)
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Summary of graph-convolutional mechanism

• Extends CNNs from grids to graphs

• Information can pass along edges

• Each layer allows nodes to see one further “hop”

20



Modeling relational data

• Encoders, decoders, autoencoders

• Graph convolutional mechanism

• Combine these to match the data being modeled

21



Starcoder

John
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Lawyer

John
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Lawyer

John
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Training is a bit involved . . .

• Random field dropout

• Graph component subselection

• Ways to combine loss functions

• . . .

23



How can we use a trained model?

Bottleneck (embedding) similarity

• Compute distance between two entities

• Find flat or hierarchical clusters of entities

Field generation

• Generate likely value of missing field

• Detect an improbable value of a present field

• Observe response of one field to another

24



Example: The post-Atlantic slave
trade



Shipping manifests

slave slave slave owner journey vessel
name sex age name date type
Willis m 20 Amidu 1832/9/24 Schooner
Maria f 19 Amidu 1832/09/24 Schooner
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Fugitive notices

slave slave escape escape owner notice notice
name sex date location name reward date
Davy m 1795/10/15 Port Tobacco Bourman 3 Pistoles 1796/02/21
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Some numbers

• 45k manifest entries spanning five cities

• 11k fugitive notices from 70 gazettes

• Not big data, but thousands of studies like this at a
research university!

27



Difficulties with data in the wild

• Unnormalized
• People/places/things recorded many times
• “What’s the age/height/sex distribution of escapees?”

• Noisy
• Vessel type: Bark, Barke, BArque, Barque, Barques
• Slave name: “Nelly’?, Nelly’s child”, “not visible”

• Missing and underspecified entities
• Majority of slaves have no last name
• Can’t tell if two “John”s are the same person
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What might a historian want to do with this data?

• Follow one slave throughout their life

• Group owners according to the nature of their workforce

• Map out trade “ecosystems” of sellers, shippers, owners,
etc

• Reconstruct slave families when there are no last names

• Determine what drove valuation in transactions and
rewards

29



Entities, field types, and relations

Data

slave name Jim
slave age 20
owner name Jane
owner sex F
vessel name Uncas
vessel type Brig

voyage date 6/2/1823

voyage dest 29.9,90.0
. . . . . .

Row 1
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Numeric
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Entities, field types, and relations

Categorical

slave name Jim
slave age 20
owner name Jane
owner sex F
vessel name Uncas
vessel type Brig

voyage date 6/2/1823
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. . . . . .

Row 1

30



Entities, field types, and relations

Text

slave name Jim
slave age 20
owner name Jane
owner sex F
vessel name Uncas
vessel type Brig

voyage date 6/2/1823

voyage dest 29.9,90.0
. . . . . .

Row 1
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Entities, field types, and relations

More complex fields

slave name Jim
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owner name Jane
owner sex F
vessel name Uncas
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. . . . . .

Row 1
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Entities, field types, and relations

Entities
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Entities, field types, and relations

Slave-to-owner
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vessel name Uncas
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Entities, field types, and relations

Vessel-to-voyage, slave-to-voyage
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owner sex F
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voyage date 6/2/1823
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Entities, field types, and relations

Fewer assumptions

slave name Jim
slave age 20
owner name Jane
owner sex F
vessel name Uncas
vessel type Brig

voyage date 6/2/1823

voyage dest 29.9,90.0
. . . . . .

Row 1
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One graph
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Train Starcoder. . .
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Looking at the most-similar pairs by entity-type, some trends
emerge:

Mistranscriptions
Baltiomre ⇐⇒ Baltimore
William Wiliams ⇐⇒ William Williams

Semantically-equivalent variants
George Y. Kelso ⇔ Kelso & Ferguson
New Orleans ⇔ Louisiana

Same slave transported multiple times1

Louisa, F, 16yo ⇔ Louisa, F, 17yo
Waters, F, 14yo ⇔ Waters, F, 15yo
Kesiah, F, 20yo ⇔ Kesiah, F, 22yo
Taylor, F, 15yo ⇔ Taylor, F, 16yo

1Many more instances of e.g. “John” following this superficial pattern
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Ongoing work



Benefits of defining these APIs

• Scaling: easy to add new studies

• Research: new architectures to implement and import

• Visualization: auto-generate figures based on schemas

• Interaction: well-defined interface to explore ML output

• Remains grounded in the particular scholarly domain

34



Entertaining America: pre-Vaudeville theater

Data

• Derived from local newspaper ads

• Actors, troupes, towns, performances

• Geo-coded town maps

Questions/Goals

• Location of performances (within a town)

• How performances are chosen and described
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Chaucer’s (and Gower’s) Metrical Voice

Data

• Poetry (e.g. Canterbury Tales) with (partial) stress
annotations

• Entities are lines, stanzas, chapters, tales

Questions/Goals

• Train Starcoder as words2stresses, lines2rhymes

• Stresses as features for authorship

• Does the traditional scansion obscure interesting
properties of the text?
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Financial and demographic history

Studies

• Tax records of Medieval Paris

• Employment in early modern London

• Economy of the Caribbean Colonies

Questions/Goals

• Impetus to treat dates and coordinates as first-class field
types

• Differential look at economic policies
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Cuneiform in the Ancient Near East

• Traditionally, inscriptions are grouped by physical
object-type

• We also have geographic location, transcription, ruler . . .
• What is the relationship between these properties?
• Is the traditional view a useful distinction, and how?

38



Compositional forces on foundational cultural texts

39



Some familiar NLP tasks

Language ID

• Communication network

• Users, messages, and languages

• Capture how multi-lingual users tweet and follow

Sentiment analysis

• Parse trees

• Words (leaves), nodes (constituents), polarities

• Capture how sentiment composes

Also, compare with GraphSAGE, KB embedding
techniques, etc
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