EN. 601.467/667 Introduction to Human Language Technology End-to-End Speech Recognition

Shinji Watanabe

Today's agenda

- Introduction to end-to-end speech recognition
- Connectionist Temporal Classification (CTC)
- Attention

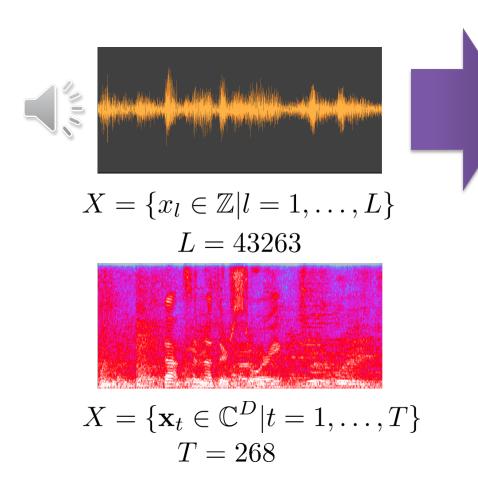
Frederick Jelinek (1932 –2010)

Statistical speech recognition and machine translation

1972 - 1993: IBM

1993 - 2010: JHU

• Automatic Speech Recognition: Mapping physical signal sequence to linguistic symbol sequence



"That's another story"

$$W = \{w_n \in \mathcal{V} | n = 1, \dots, N\}$$
$$N = 3$$

 $\operatorname{arg} \max_{\mathbf{W}} p(\mathbf{W}|\mathbf{O})$

O: Speech sequence

W: Text sequence

$$\arg \max_{W} p(W|O) = \arg \max_{W} p(O|W)p(W)$$

$$\approx \arg \max_{W|L} p(O|L)p(L|W)p(W)$$

Speech recognition

-p(O|L): Acoustic model (Hidden Markov model)

-p(L|W): Lexicon

-p(W): Language model (n-gram)

$$\arg \max_{W} p(W|O) = \arg \max_{W} p(O|W)p(W)$$

$$\approx \arg \max_{W,L} p(O|L)p(L|W)p(W)$$

Speech recognition

-p(O|L): Acoustic model (Hidden Markov model)

-p(L|W): Lexicon

-p(W): Language model (n-gram)

- Factorization
- Conditional independence (Markov) assumptions, CIA

$$\arg\max_{W} p(W|O) = \arg\max_{W} p(O|W)p(W)$$

Machine translation

-p(O|W): Translation model

-p(W): Language model

$$\arg \max_{W} p(W|O) = \arg \max_{W} p(O|W)p(W)$$

$$\approx \arg \max_{W,L} p(O|L)p(L|W)p(W)$$

Speech recognition

-p(O|L): Acoustic model (Hidden Markov model)

-p(L|W): Lexicon

-p(W): Language model (n-gram)

Continued 40 years

$$\arg \max_{W} p(W|O) = \arg \max_{W} p(O|W)p(W)$$

$$\approx \arg \max_{W,L} p(O|L)p(L|W)p(W)$$

Speech recognition

-p(0|L): Acoustic model

-p(L|W): Lexicon

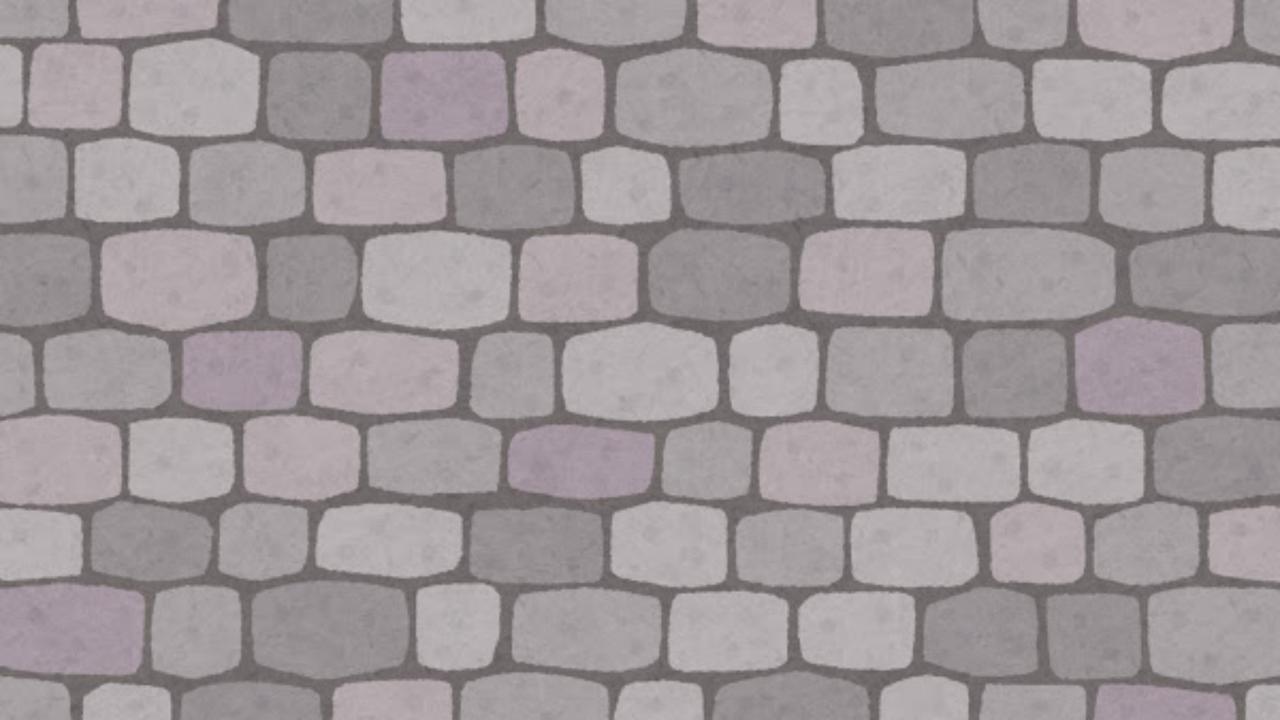
-p(W): Language model

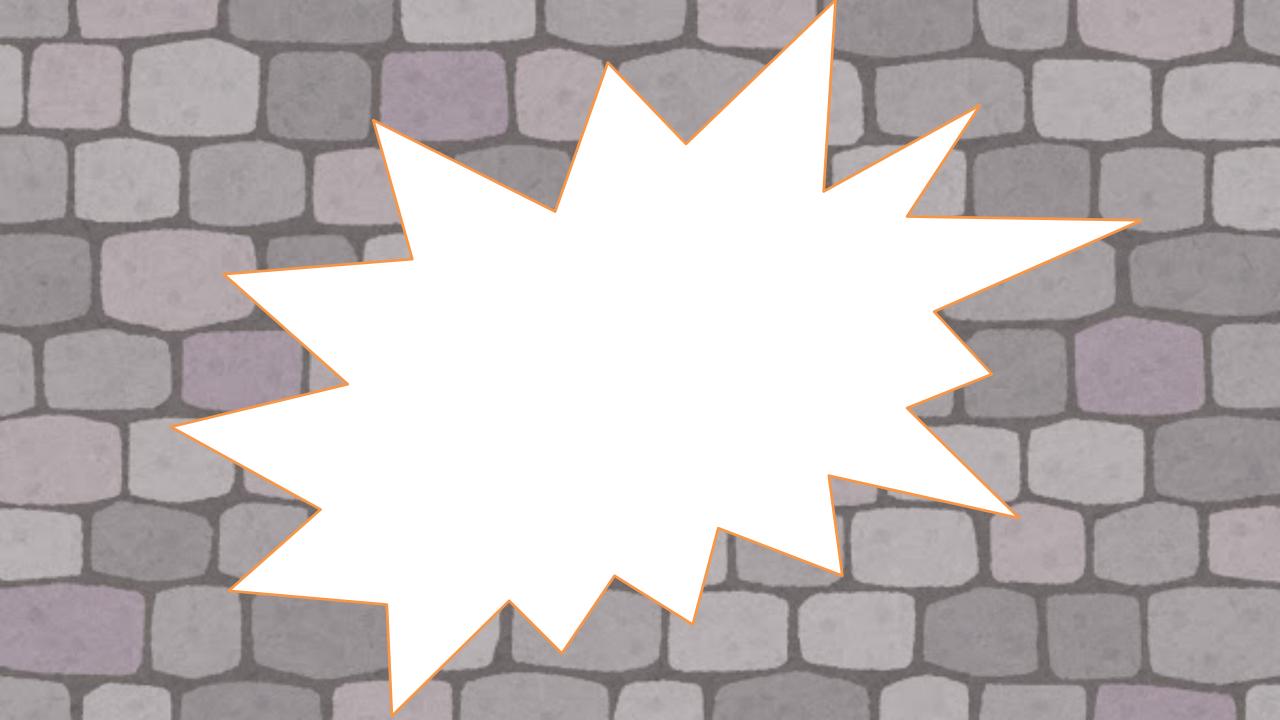
Continued 40 years

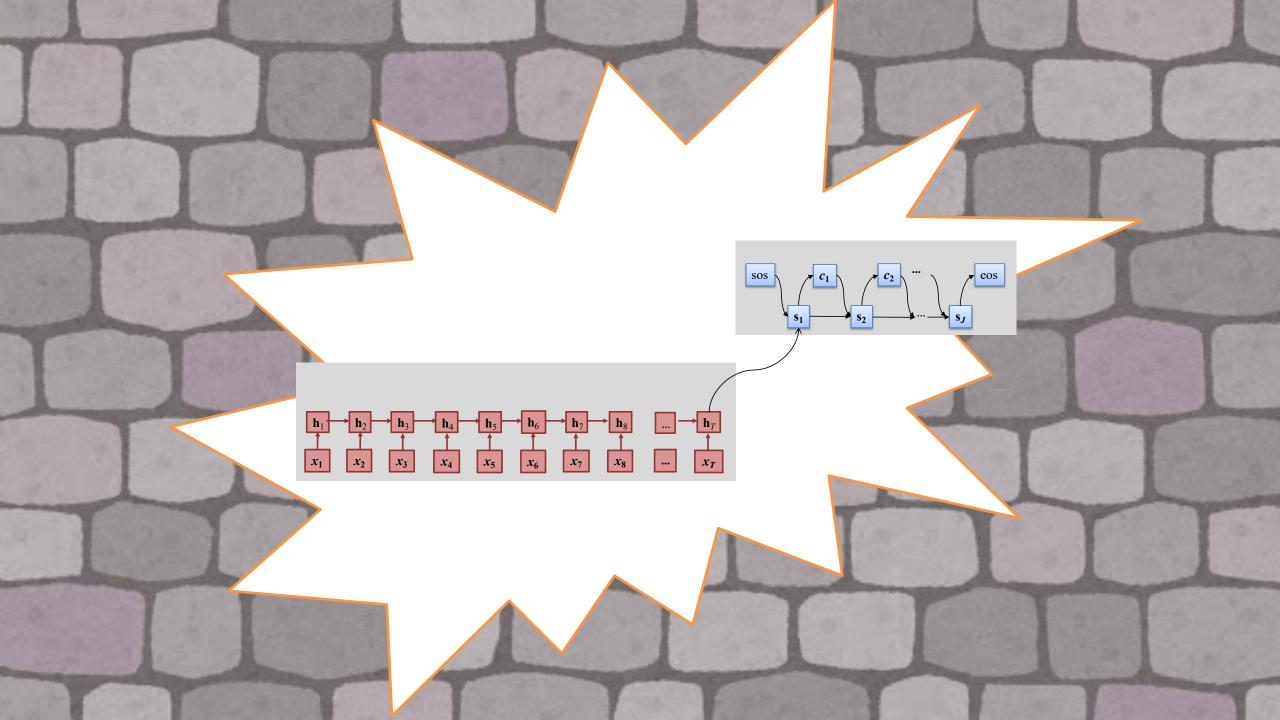
Big barrier:

noisy channel model
HMM
n-gram
etc.

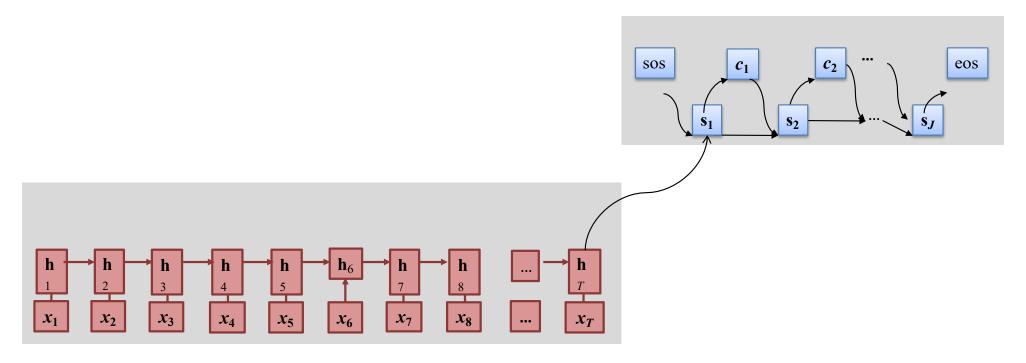
However,



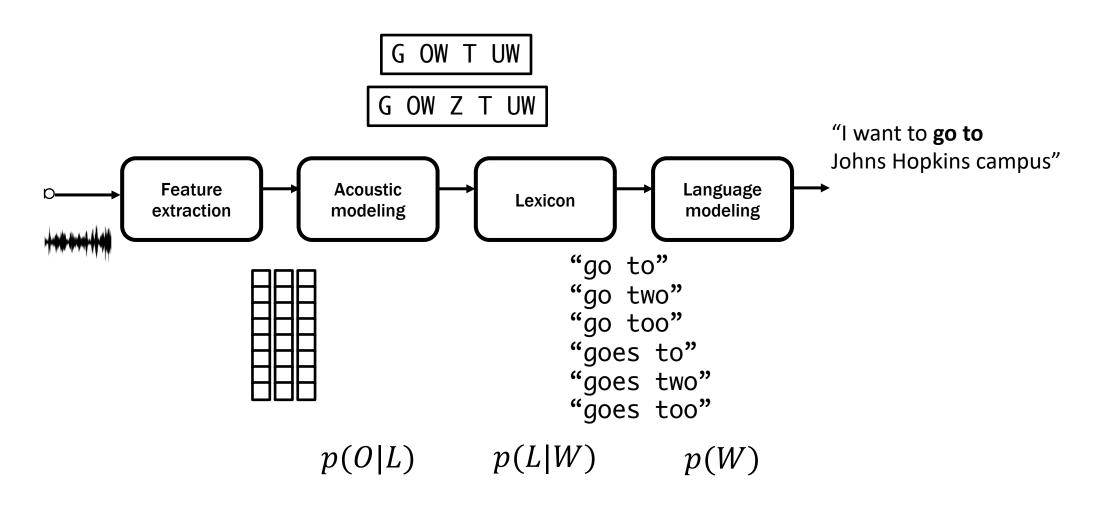


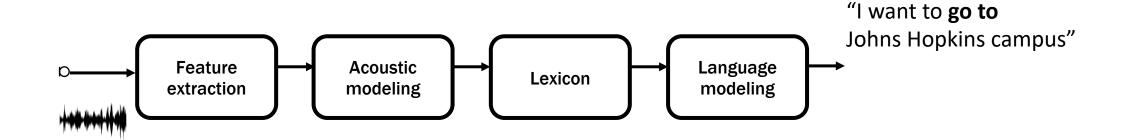


"End-to-End" Processing Using Sequence to Sequence

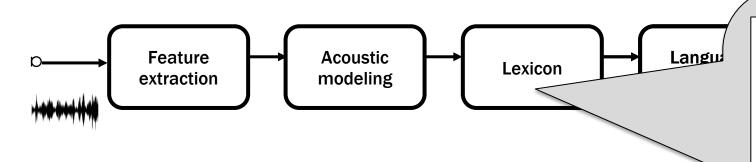


- Directly mode p(W|O) with a single neural network
- Great success in neural machine translation





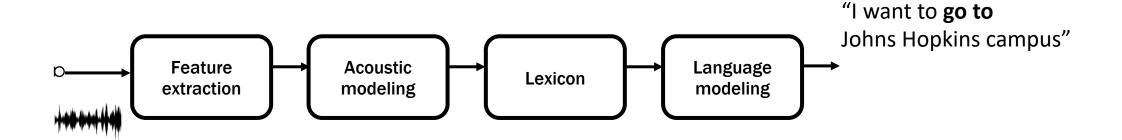
- Require a lot of development for an acoustic model, a pronunciation lexicon, a language model, and finite-state-transducer decoding
- Require linguistic resources
- Difficult to build ASR systems for non-experts



- Require a lot of development for an acoustic lexicon, a language model, and finite-state-tr
- Require linguistic resources
- Difficult to build ASR systems for non-experts

Pronunciation lexion

```
AH
        EY Z
        ΕY
        ΕY
        EY Z
A.S
        EY Z
AAA
        T R IH P AH L EY
AABERG
        AA B ER G
AACHEN
        AA K AH N
                AA K AH N ER
AACHENER
AAKER
        AA K ER
AALSETH AA L S EH TH
        AA M AH T
       AA N K AO R
AARDEMA AA R D EH M AH
AARDVARK
AARON
AARON'S EH R AH N Z
AARONS
```



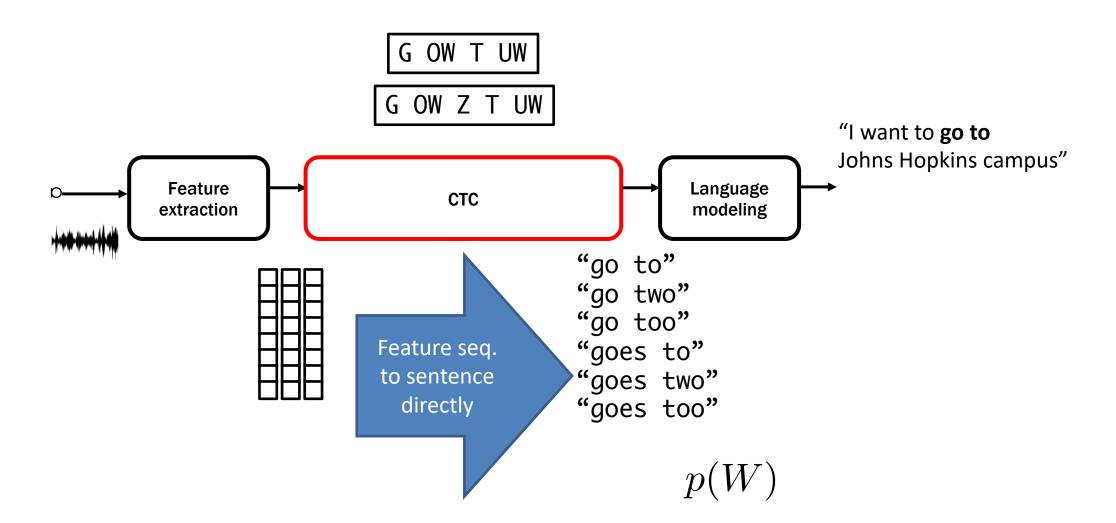
- Require a lot of development for an acoustic model, a pronunciation lexicon, a language model, and finite-state-transducer decoding
- Require linguistic resources
- Difficult to build ASR systems for non-experts

From pipeline to integrated architecture

- Train a deep network that directly maps speech signal to the target letter/word sequence
- Greatly simplify the complicated model-building/decoding process
- Easy to build ASR systems for new tasks without expert knowledge
- Potential to outperform conventional ASR by optimizing the entire network with a single objective function

Today's agenda

- Introduction to end-to-end speech recognition
- Connectionist Temporal Classification (CTC)
- Attention



Character seq. vs. word seq.

- Example: "I see"
 - $W = (w_i \in \{\text{``i''}, \text{``see''}, \dots) | i = 1, 2)$ $C = (c_j \in \mathbb{U} | j = 1, \dots, 5), \text{ where } \mathbb{U} = \{\text{``a''}, \text{``b''}, \text{``c''}, \text{``d''}, \text{``e''}, \dots\} \text{ (Latin alphabet)}$
- Low/zero count problem
 - Word "bitcoin" is not appeared in old WSJ sentences, but character seq. can cover it
- Semantic context, lexicon constraint
 - Word unit can handle them, but not in the character unit
- No word unit in some languages
 - Some languages do not have word boundaries (no explicit word units)
- Remark: Subword/token (e.g., "_i", "_s", ("ee"), data-driven ways to tokenize a character sequence to consider the benefits of both character and word units

Connectionist temporal classification

Formulation

- Let character seq. be $C=(c_t \in \mathbb{U}|j=1,...,J)$ and feature seq. be $O=(\mathbf{o}_t \in \mathbb{R}^D|t=1,...,T)$
- Focus on the posterior distribution p(C|O), and we can start from the Bayes decision theory:

$$\hat{C} = \operatorname*{argmax}_{C} p(C|O)$$

 This is the same start as the HMM except that we use the character seq. instead of the word seq.

Connectionist temporal classification

- Formulation
 - Focus on the posterior distribution p(C|O), and rewrite it as

$$p(C|O) = \sum_{Z} p(C|Z) p(Z|O)$$

$$\approx \sum_{Z} \underbrace{p(C|Z)}_{\text{CTC LM CTC AM}} p(Z|O)$$

- No Bayes theorem, but use conditional independence assumption
- Introduce latent variable seq. $Z = (z_t \in \{\mathbb{U}, <\mathbf{b}>\}|t=1,...,T)$ that has **the same length** as input feature seq.
 - We can use a conventional RNN to model this p(Z|O)
- Similarly to HMM, we'll consider the summation of all possible Z

Introduction of blank symbol

• First, we insert to the character seq.

"see"

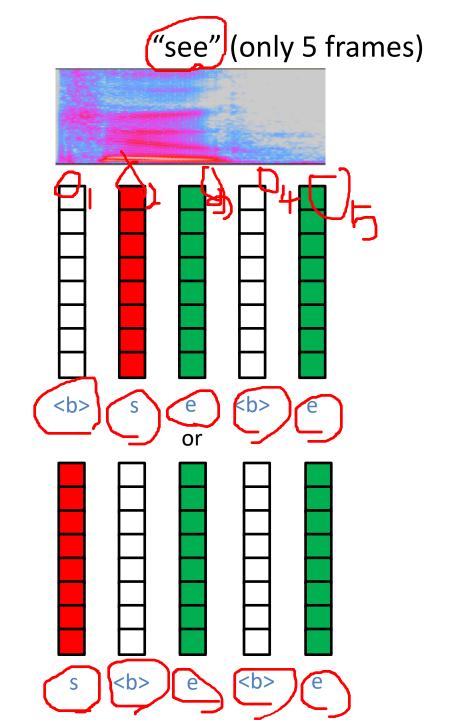
```
\Rightarrow C = (\text{"s", "e", "e"}), \text{ where } |C| = J

\Rightarrow C' = (\text{"<b>", "s", "<b>", "e", "<b>", "e", "<b>"), where <math>|C'| = 2J + 1
```

- Then, expand C' to the frame length T to form Z
 - All characters can be repeated
 - can be skipped except when it is inserted between repeated character
 - "s", "", "e": we can skip
 - "e", "", "e": we cannot skip
 - See A. Graves et al. "Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks." in ICML

Example of Z

- C = ("s", "e", "e")
- C' = ("", "s", "", "e", "", "e", "")
- T = 5
- $Z \neq$ ("", "s", "e", "", "e"), ("s", "", "e", "", "e"), ("s", "e", "e"),....
- This is an alignment problem
- $C \rightarrow Z$: one to many mapping



CTC Formulation

CTC acoustic model

$$p(Z|O) = \prod_{t=1}^{T} p(z_t|\underline{z_1, \dots, z_{t-1}}, O)$$

$$\approx \prod_{t=1}^{T} p(z_t|O).$$

- Using conditional independence assumption to factorize the posterior $p(Z|\theta)$ but this is not bad assumption compared with HMM
- This can be realized by Bidirectional LSTM or self attention

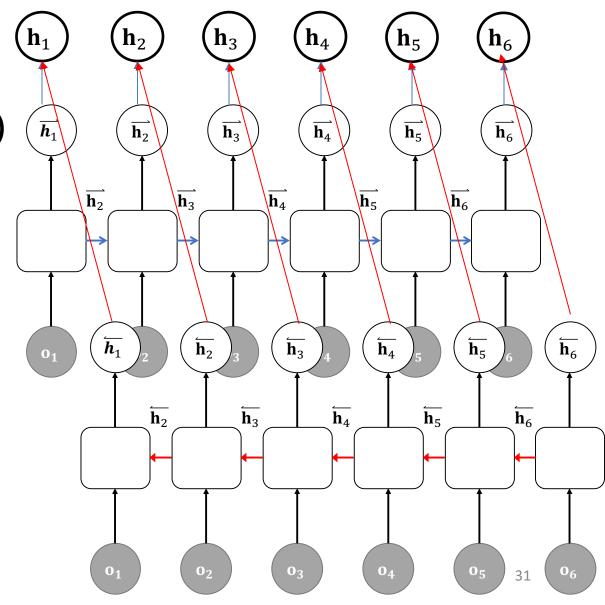
$$p(z_t = j|O) = [\operatorname{softmax}(\mathbf{W}\mathbf{h}_t + \mathbf{b})]_j,$$

$$\mathbf{h}_t = \operatorname{BLSTM}(O) \text{ for } t = 1, \dots, T.$$

Bidirectional RNN

•
$$\mathbf{h}_t = \begin{pmatrix} \mathbf{h}_t \\ \mathbf{h}_t \end{pmatrix} = f(O = (\mathbf{o}_1, ..., \mathbf{o}_T))$$
Then,

• $p(z_t|0)$ $\approx p(z_t|\mathbf{h_t})$



CTC Formulation

CTC Language model (generative model view)

$$p(C|Z) = \frac{p(Z|C)p(C)}{p(Z)}$$

$$= \prod_{t=1}^{T} p(z_t|z_1, \dots, z_{t-1}, C) \frac{p(C)}{p(Z)}$$

$$\approx \prod_{t=1}^{T} p(z_t|z_{t-1}, C) \frac{p(C)}{p(Z)},$$

- Using conditional independence assumption (1st order Markov) to factorize the posterior, same as the HMM
- -p(C): Letter language model (we can also combine the word language model)
- -p(Z): Prior probability for the state sequence

Summary of CTC formulation

• p(C|O) is rewritten as follows

$$p(C|O) \approx \sum_{Z} \prod_{t=1}^{T} p(z_t|z_{t-1}, C) p(z_t|O) \frac{p(C)}{p(Z)}$$

- In general, prior probabilities $p(\mathcal{C})$ and $p(\mathcal{Z})$ are separately obtained (not fully end-to-end)
- We can further eliminate the prior probabilities by assuming the uniform distributions as follows ($\mathcal{Z}(C)$ denotes all possible CTC paths given C):

$$p(C|O) \approx \sum_{Z \in \mathcal{Z}(C)} \prod_{t=1}^{T} p(z_t|O)$$

Basically, we can use a forward-backward algorithm to estimate the parameter

HMM/DNN vs. CTC

Conditional independence assumptions

Language models

Use of pronunciation lexicon information

Implementation

Let's discuss the difference

CTC vs. HMM

HMM

p(W|O)

 With Bayes rule and CIA (separate acoustic, lexicon, and language models)

$$\sum_{Z,L} p(O,Z|L) p(L|W) p(W)$$

1st order Markov and frame-level decomposition

$$p(O|Z)p(Z|L) \rightarrow \prod_t p(o_t|z_t)p(z_t|z_{t-1},L)$$

• Replace the likelihood function $p(o_t|z_t)$ with a DNN based on the pseudo likelihood trick

CTC

p(C|O)

No Bayes rule, but CIA (separate acoustic and language model)

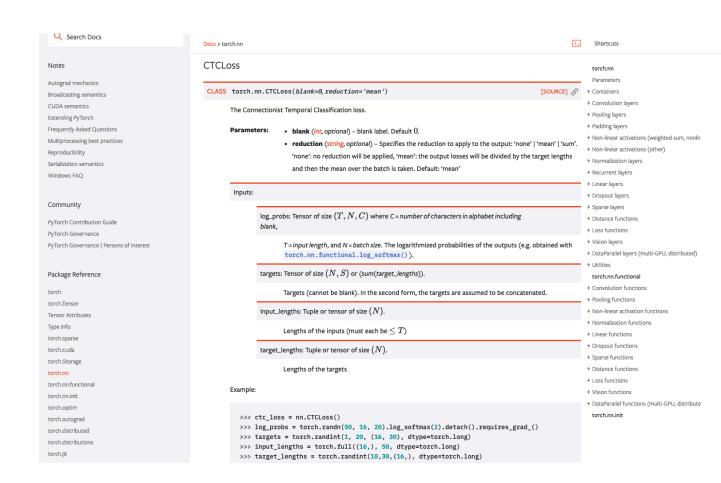
$$\sum_{Z} p(C|Z)p(Z|O)$$

- 1st order Markov and frame-level decomposition $p(Z|O)p(C|Z) \rightarrow \prod_t p(z_t|O) p(z_t|z_{t-1},C)p(C)$
- Replace the frame-level posterior distribution $p(z_t|0)$ with a DNN

Basic assumptions are very similar (CIA, 1st order Markov assumptions)

Implementation of CTC

- During training
 - Major toolkit supports CTC
 - Tensorflow, Pytorch, Chainer, etc.
 - Nvidia cuDNN also supports CTC
- During recognition
 - You have to implement the following search: $argmax_C p(C|Z)p(Z|O)$
 - This can be efficiently performed by using a finite state transducer



Baidu CTC [Amodei+(2015)]

- Optimization of computational cost of CTC dynamic programming
- Multiple GPUs
- Architecture optimization (BLSTM -> GRU, use of CNN)
- Use 12,000 hours of data for training
- Data augmentation (noise)

Read Speech							
Test set	DS1	DS2	Human				
WSJ eval'92	4.94	3.60	5.03				
WSJ eval'93	6.94	4.98	8.08				
LibriSpeech test-clean	7.89	5.33	5.83				
LibriSpeech test-other	21.74	13.25	12.69				

Google CTC [Soltau+(2016)]

- Word-level CTC, conventional BLSTM
- No language model
- 125,000 hours of training data (!) from Youtube

						Spoken WFR(%) w/ LM w/o LM		
Model	Layers	Outputs	Params	Vocab	OOV(%)	w/LM	w/o LM	
CTC spoken words	7x1000	6400	43m	500000	0.24	12.3		
CTC spoken words	7x1000	82473	116m	82473	0.63	11.6	12.0	

Word-level CTC obtains comparable performance (even without LM)

Summary

• CTC

- One promising direction of end-to-end
- No language model (but it can be combined with an LM)
- Still based on conditional independence assumptions and Markov model
- CTC is really end-to-end?
- Can we use it to any of sequence to sequence task?
 - The alignment should be monotonic (HMM like task, it cannot be applied to machine translation)
 - The input length must be longer than the output length (it cannot be applied to speech synthesis)

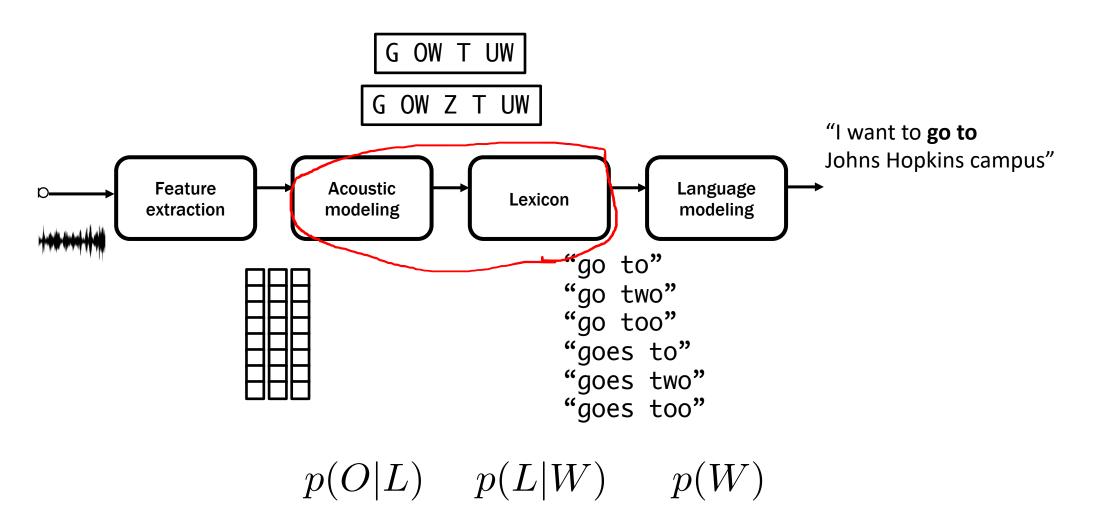
Attention

Another end-to-end

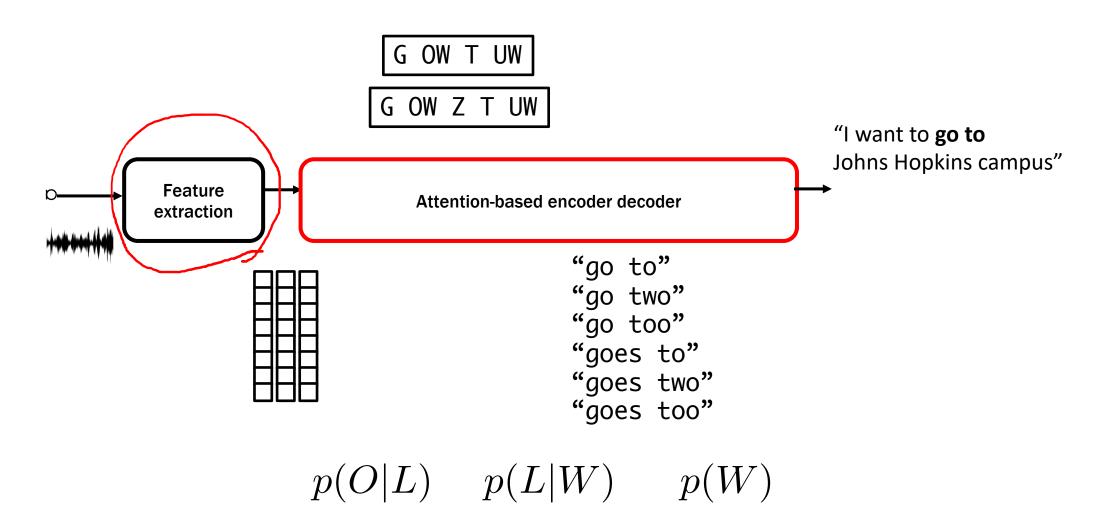
Today's agenda

- Introduction to end-to-end speech recognition
- Connectionist Temporal Classification (CTC)
- Attention

Speech recognition pipeline



Speech recognition pipeline



Attention based encoder-decoder

- Let $C = (c_j \in \mathbb{U}|j=1,...,J)$, be a character sequence $-\mathbb{U}$: set of characters
- Let $O = (\mathbf{o}_t \in \mathbb{R}^D | t = 1, ..., T)$, be a sequence of D dimensional feature vectors $\hat{C} = \operatorname{argmax}_{\mathcal{C}} p(C|O)$
- Problem: T and J are different, and we cannot use normal neural networks
- Sequence to sequence is a solution to deal with it

Problem of original encoder-decoder architecture

$$p(C|O) = \prod_{j} p(c_j|c_{1:j-1}, \mathbf{h'}_T)$$

- We cannot explicitly connect the relationship between input and output (an alignment property)
 - No explicit connection with between frame-level activations \mathbf{h}'_t with output labels y_j

Instead, we consider the following extension

$$p(C|O) = \prod_{j} p(c_j|c_{1:j-1}, v_j)$$

 $-\mathbf{v}_i$ has an explicit dependency for character c_i

Attention mechanism

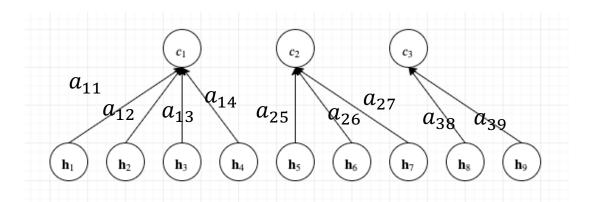
$$p(C|O) = \prod_{j} p(c_j|c_{1:j-1}, \mathbf{v}_j)$$

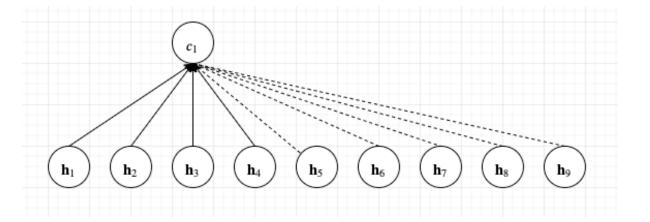
Obtain the context vector

$$-$$
 Compute the assignment probability for each output j from a neural network

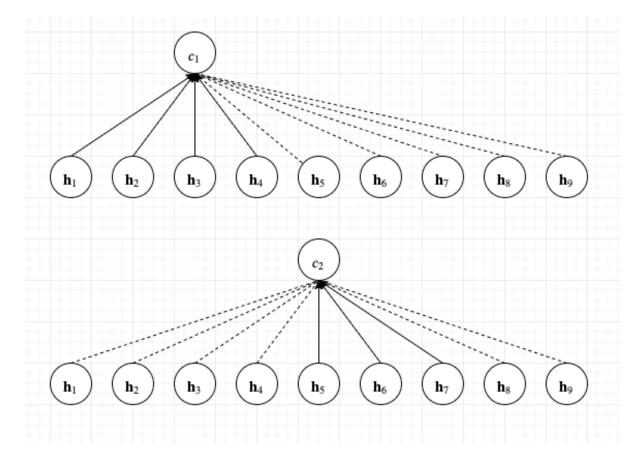
$$- \mathbf{a}_j = \{a_{jt} | t = 1, ..., T\} \in \mathbb{R}^T, 0 < a_{jt} < 1, \sum_{t=1}^T a_{jt} = 1$$

- a_{it} is obtained by using a neural network

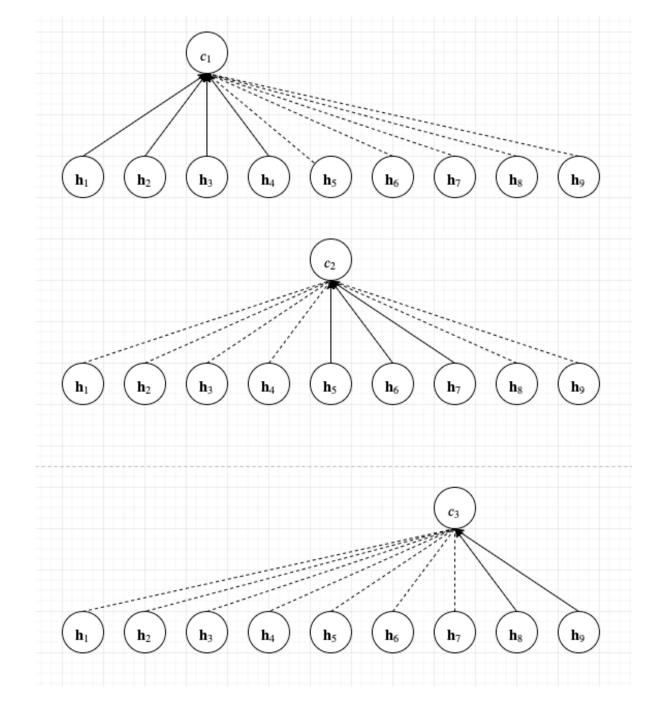




Normal arrow: high probability Dashed arrow: low probability

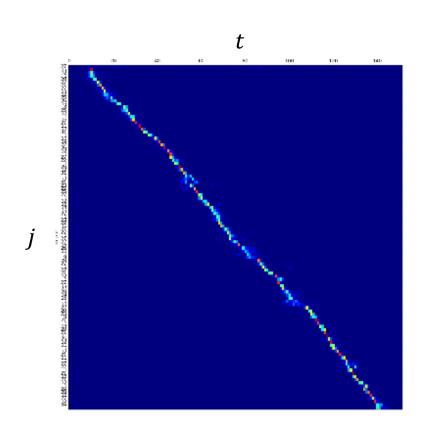


Normal arrow: high probability Dashed arrow: low probability



Normal arrow: high probability Dashed arrow: low probability

The attention mechanism performs a soft alignment

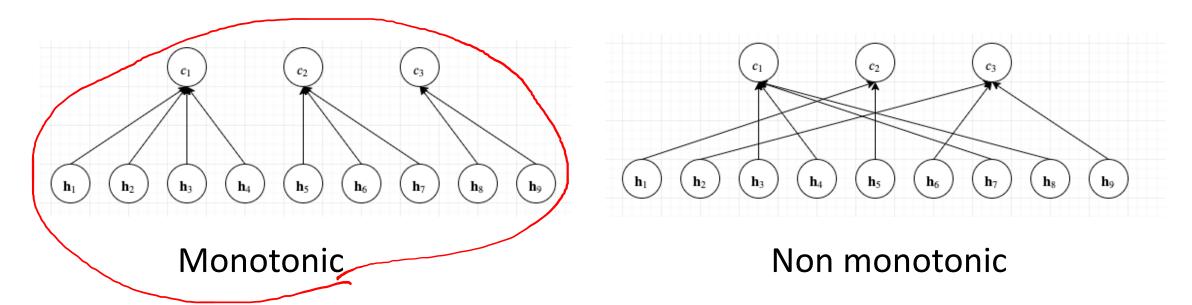


•
$$\mathbf{v}_j = \sum_{t=1}^T a_{jt} \mathbf{h'}_t$$

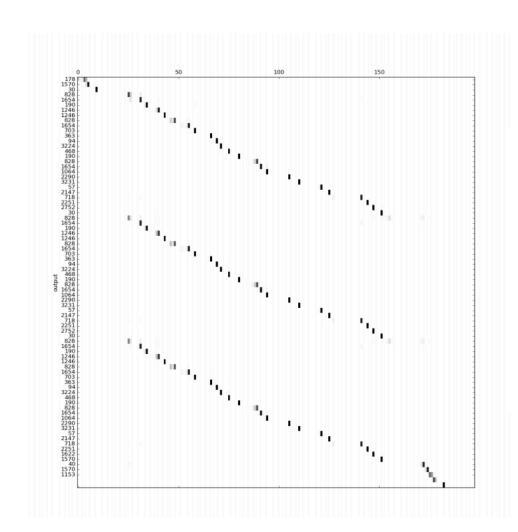
- Attention weight a_{jt} determines whether encoder $\mathbf{h'}_t$ is assigned to a character c_i or not
 - $-a_{jt} \approx 0$: no assignment
 - $-a_{it} \neq 0$: assigned

The attention mechanism performs a soft alignment

- There is no constraint for the alignment
- The order can be changed (good for machine translation, but it does not happen in speech recognition)



Examples of wrong alignments



id: (20040717_152947_A010409_B010408-A-057045-057837)

Reference

但是如果你想想如果回到了过去你如果带着这个现在的记 忆是不是很痛苦啊

MTL

Scores: (#Correctness #Substitution #Deletion #Insertion) 28 2 3 45 但是如果你想想如果回到了过去你如果带着这个现在的节 如果你想想如果回到了过去你如果带着这个现在的节如果 你想想如果回到了过去你如果带着这个现在的机是不是很

Difference in training and recognition

During training

- $\hat{\theta} = \operatorname{argmax}_{\theta} \prod_{i} p(c_{i} | c_{1:i-1}, \mathbf{v}_{i})$
- We use the transcriptions for $c_{1:j-1}$

During recognition

- $\hat{C} = \operatorname{argmax}_{c} \prod_{j} p(c_{j} | c_{1:j-1}, \mathbf{v}_{j})$
- However, we don't know the correct transcription $c_{1:j-1}$ during recognition
- We use estimated history $\hat{c}_{1:i-1}$ instead of the correct transcription
- → mismatch of training and recognition
- Recognition result is stopped when we observe the "eos" symbol
- $argmax_C$ is impossible \rightarrow Approximately only consider possible high-score hypotheses (beam search)

Summary of attention encoder-decoder

- No conditional independence assumption
 - No need for pronunciation lexicon
 - Attention & Encoder: acoustic model
 - Decoder: language model
 - Combine acoustic and language models with single network
- Attention model is too flexible for alignment issues
- Not easy to combine the language model trained with a bunch of text data

Google's Experiments (12,500 hours)

- They use huge amount of training data (pair data)
 - 12,500 hours
- A lot of techniques in addition to a simple end-to-end ASR
- End-to-End ASR system finally achieved 5.8%
- Classical HMM system (Hybrid DNN/HMM system) 6.7%

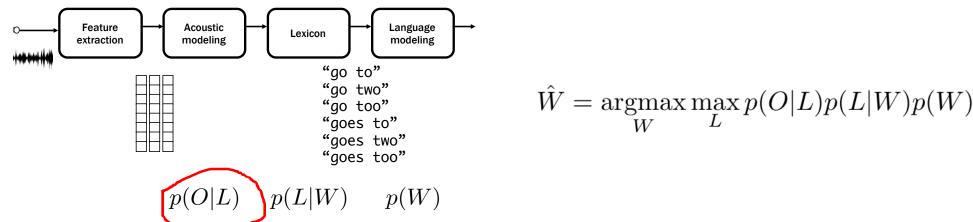
Experiments (< 80 hours, Nov 2018)

• Word Error Rate [%] in **English** Wall Street Journal (WSJ) task

dev93	eval92			
7.0	4.7	Our best end-to-end		
-	9.3			
-	8.2			
-	7.3			
9.7	6.7	E a la la casa de la casa		
-	5.6	End-to-end best		
-	5.6			
6.4	3.6	DNN/HMM		
5.6	2.6	(pipeline) best		
	7.0 - - 9.7 - - - 6.4	7.0 4.7 - 9.3 - 8.2 - 7.3 9.7 6.7 - 5.6 - 5.6 6.4 3.6		

Why HMM-based classical ASR is better than End-to-End ASR?

Classical HMM



- We can separately train acoustic, lexicon, and language model
- We can incorporate pronunciation dictionary information through p(L|W)
- We can train the language model p(W) only with text (newspaper, web, etc.)

On the other hand end-to-end ASR *always require the pair data* to train p(W|O)

(We can incorporate a language model p(W) by $p(W)^{\alpha}p(W|O)$ heuristically)

HMM/DNN vs. CTC vs. Attention

Conditional independence assumptions

Language models

Use of pronunciation lexicon information

Implementation

Let's discuss the difference

CTC vs. HMM vs. Attention

HMM

p(W|O)

• With Bayes rule and CIA (separate acoustic, lexicon, and language models)

$$\sum_{Z,L} p(O,Z|L)p(L|W)p(W)$$

- 1st order Markov and frame-level decomposition $p(O|Z)p(Z|L) \rightarrow \prod_t p(o_t|z_t)p(z_t|z_{t-1},L)$
- Replace the likelihood function $p(o_t|z_t)$ with a DNN based on the pseudo likelihood trick

CTC

p(C|O)

 No Bayes rule, but CIA (separate acoustic and language model)

$$\sum_{Z} p(C|Z)p(Z|O)$$

- 1st order Markov and frame-level decomposition $p(Z|O)p(C|Z) \rightarrow \prod_t p(z_t|O) p(z_t|z_{t-1},C)p(C)$
- Replace the frame-level posterior distribution $p(z_t|\mathcal{O})$ with a DNN

Attention

p(C|O)

No CIA, no separate LM

$$\prod_{j} p(c_j|c_{1:j-1}, \mathbf{v}_j), \mathbf{v}_j = \sum_{j} a_{jt} \mathbf{h'}_t$$