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Today’s agenda

* Introduction to end-to-end speech recognition
* Connectionist Temporal Classification (CTC)
* Attention



o GENTER FOR LANGUAGE
o AND SPEECH PROCESSING

Frederick Jelinek (1932 —2010)

Statistical speech recognition and machine
translation

1972 - 1993: IBM
1993 - 2010: JHU




Jelinek methodology (1970s-)



Jelinek methodology (1970s-)

* Automatic Speech Recognition: Mapping physical signal sequence to linguistic symbol sequence

MWWW«M » “That’s another story”

X={x,ezZ|ll=1,...,L} W=A{w, eVn=1,...,N}
L = 43263 N =3

X={x€CPlt=1,...,T}
T = 268



Jelinek methodology (1970s-)

O: Speech sequence
W' Text sequence

arg max p(W|0)



Jelinek methodology (1970s-)

L: Phoneme sequea
dI's Id p(W|0) = argmaxp

— zargr‘r}%( @@

* Speech recognition G
— p(O|L): coustlc mode HI. rkov rInL el) PCLI U\/> I)”\b

— p(LIW):  Lexicon
- p(W): anguage model)(n-gram)




Jelinek methodology (1970s-)

arg mvexp(W|0 = arg max (O|\W)p(W) <
~ argmaxp(0|L)p(LIW)p(W)

* Speech recognition
— p(0|L): Acoustic model (Hidden Markov model)

— p(L|W): Lexicon

— p(W): Language model (n-gram) | Factorization

* Conditional independence
(Markov) assumptions, CIA




Jelinek methodology (1970s-)

arg max p(W|0) = arg max p(O|W)p(W)

* Machine translation

— p(O|W): Translation model
— p(W): Language model



Jelinek methodology (1970s-)

arg mvz\}xp(W|0) = arg mvz\}xp(O W)p(W)
~ argmaxp(0|L)p(L|W)p(W)

* Speech recognition

— p(O|L): Acoustic model (Hidden Markov model)
— p(L|W): Lexicon
— p(W): Language model (n-gram)

* Continued 40 years



Jelinek methodology (1970s-)

arg mve\}xp(W|0) = arg mv\a}xp(O W)p(W)
~ argmaxp(0|L)p(L|W)p(W)

* Speech recognition Big barrier:

— p(O|L): Acoustic model noisy chl_ela:ﬂnl\jl model
— p(LIW):  Lexicon A o
- p(W): Language model g

* Continued 40 years




However,















“End-to-End” Processing
Using Sequence to Sequence
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e Directly modith a single neural network

* Great success in neural machine translation
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Speech recognition pipeline

G ONW T UW

GOW Z T UW

“I want to go to

Johns Hopkins campus”
Feature Acoustic Lexicon Language
extraction modeling modeling

“go to”
“go tWO”
(13 »
go too
“goes to”
“goes two”
“goes too”

p(O|L) p(L|W) p(W)




Speech recognition pipeline

“I want to go to

Johns Hopkins campus”
Feature Acoustic Lexicon Language
extraction modeling co modeling

 Require a lot of development for an acoustic model, a pronunciation
lexicon, a language model, and finite-state-transducer decoding

* Require linguistic resources

* Difficult to build ASR systems for non-experts




Speech recognition pipeline
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Speech recognition pipeline

“l want to go to

Johns Hopkins campus”
Feature Acoustic Lexicon Language
extraction modeling co modeling

 Require a lot of development for an acoustic model, a pronunciation
lexicon, a language model, and finite-state-transducer decoding

* Require linguistic resources

* Difficult to build ASR systems for non-experts




From pipeline to integrated architecture

“l want to go to

Johns Hopkins campus”
D—[ End-to-End Neural Network ]’
.

Train a deep network that directly maps speech signal to the target letter/word sequence
Greatly simplify the complicated model-building/decoding process
Easy to build ASR systems for new tasks without expert knowledge

Potential to outperform conventional ASR by optimizing the entire network with a single
objective function



Today’s agenda

* Introduction to end-to-end speech recognition
e Connectionist Temporal Classification (CTC)
* Attention



Speech recognition pipeline

G ONW T UW

GOW Z T UW

“I want to go to

Feature
extraction

al

CTC

Language
modeling

] Johns Hopkins campus”

-

Feature seq.

to sentence
directly

“go to”
“go tWO”
(14 »
go too
“goes to”
“goes two”
“goes too”

p(W)

24



Character seq. vs. word seq.

Example: “l see”

— W = (w; € {“i",“see”, ... }Ji = 1,2)
- C=(el|j= 1, ..,5), where U = @@} (Latin alphabet)
Low/zero count problem

— Word “bitcoin” is not appeared in old WSJ sentences, but character seq. can cover it

Semantic context, lexicon constraint
— Word unit can handle them, but not in the character unit

Qlo/ward u@n some languages

— Some languages do not have word boundaries (no explicit word units)

Remark: Subword/token (e.g., “_i”, “_s”(“e ﬁ data-driven ways to tokenize a
character sequence to consider the benefits’of both character and word units



Connectionist temporal classification

* Formulation

— Let character seq. be C = (¢; € U|j = 1, ...,]) and feature seq. be
0=(,€eRP|t=1,..,T

— Focus on the posterior distribution p(C|0), and we can start from
the Bayes decision theory:

C' = argmax p(C|O)
C

— This is the same start as the HMM except that we use the character
seq. instead of the word seq.



Connectionist temporal classification

* Formulation
— Focus on the posterior distribution p(C|0), and rewrite it as

$(C10) =3 p(C Cz]/(/)pwo;

~Zp Z) p(Z|0)
z CTC LM CTC AM
— No Bayes theorem, but use conditional independence assumption
— Introduce latent variableseq. Z = (z; € {U,< b >}|t = 1, ...,T) that has
the same length as input feature seq.

* We can use a conventional RNN to model this p(Z|0)
— Similarly to HMM, we’ll consider the summation of all possible Z




Introduction of blank symbol <b>

* First, we insert <b> to the character seq.

V24 7

see
9 C — (u ” un’ uen)’ Where |C| :]
9 CI — ”S”, ”<b>”, uen’ ”<b>", uen’ ”<b>”), Where |CI| — 2] + 1

* Then, expand C' to the frame length T to form Z
— All characters can be repeated
— <b> can be skipped except when it is inserted between repeated character

“w_ 7 9

e “s” 7"<b>” "e”: we can skip <b>

a7 n n n_n,

e “e” "<b>" "e”: we cannot skip <b>

* See A. Graves et al. "Connectionist temporal classification: labelling unsegmented sequence
data with recurrent neural networks.” in ICML



(only 5 frames)

Example of Z

(ll ” ll n ”)

C — (Il<b>”’ o II’ Il<b>H Ile”’ Il<b>” Ilell’ ll<b>”)

’ )
Il<b>H Il ” ll n” ll<b>” lle” o ” ll II Ileﬂ
] ’ I ’
” o ”) (Il ” II n” ll ” Il II Ile I)
) ’°

G]@@ @ )
This is an alignment problem or

C — Z:oneto many mapping




CTC Formulation

e CTC acoustic model

T

p(210) = [ [ p(2t| 21,2 v2=T, O)

t=1

T

— Using conditional independence assumption to factorize the
posterior p(Z|0) but this is not bad assumption compared with
HMM

— This can be realized by Bidirectional LSTM or self attention
\—‘_N_. _—_’—_\
p(z: = j|O) = [softmax(Wh; + b)]j :

h, = BLSTM(O) for t = 1,...,T.




Bidirectional RNN




CTC Formulation

e CTC Language model (generative model view)

_ p(Z]C)p(C)

T
f— z Z « o e Z Z@
_Ep< t| 1, ) t—laC>p(Z)
o s p(C)
~ p( t| t_l,C)p(Z),

~
I
—

A

— Using conditional independence assumption (15t order Markov) to factorize the
posterior, same as the HMM

— p(C): Letter language model (we can also combine the word language model)
— p(Z): Prior probability for the state sequence




Summary of CTC formulation

p(C|0) is rewritten as follows

p(C|O) = ZH]? (zt|2t—1, Cp(2¢|O)

In general, prior probabilities p(C) and p(Z) are separately obtained (not
fully end-to-end)

We can further eliminate the prior probabilities by assuming the uniform
distributions as foIIows (Z(C) denotes all possible CTC paths given C):

p(ClO) ~/ >~ Hp (2|O)

ZeZ(0) =1

N Vv
—Pctc (C‘O)

7

— Basically, we can use a forward-backward algorithm to estimate the parameter



HMM/DNN vs. CTC

* Conditional independence assumptions
* Language models

e Use of pronunciation lexicon information

Implementatio




CTC vs.

HMM

HMM
p(W10)
e With Bayes rule and CIA (separate acoustic,
lexicon, and language models)

Z,L

e 1storder Markov and frame-level
decomposition

p(O|2)p(ZIL) 2 [l:p(otlze)p(z¢)2e—1, L)
* Replace the likelihood function p(o¢|z;) with a
DNN based on the pseudo likelihood trick

CTC

oCio) >
es rule, but CIA (separate acoustic and

language model)

Z@)p(zw)
Z

e 1storder Markov and frame-level decomposition

p(Z|0)p(C|Z) =2 [l p(2:|0) p(z¢]zt—1, O)p(C)
* Replace the frame-level posterior distribution
p(z¢|0) with a DNN

Basic assumptions are very similar (CIA, 15t order Markov assumptions)

35




Implementation of CTC

During training
— Major toolkit supports CTC

* Tensorflow, Pytorch, Chainer,
etc.

* Nvidia cuDNN also supports CTC
During recognition
— You have to implement the
following search:
argmax¢ p(C|Z)p(Z]0)
— This can be efficiently performed
by using a finite state transducer

L search Docs

Notes

Autograd mechanics
Broadcasting semantics
CUDA semantics

Extending PyTorch

Frequently Asked Questions
Multiprocessing best practices
Reproducibility

Serialization semantics

Windows FAQ

Community

PyTorch Contribution Guide

PyTorch Governance

PyTorch Governance | Persons of Interest

Package Reference

torch
torchTensor
Tensor Attributes
Type Info
torch.sparse
torch.cuda
torch.Storage
torch.nn
torch.nn.functional
torch.nn.init
torch.optim
torch.autograd
torch.distributed
torch.distributions

torchjit

Docs > torch.nn B

CTCLoss

CLASS toxch.nn.CTCLoss(blank=0, reduction="mean") [SOURCE] §*

The Connectionist Temporal Classification loss.

Parameters: « blank (int, optional) - blank label. Default 0.

reduction (string, optional) - Specifies the reduction to apply to the output: ‘none’ | ‘mean’ | ‘sum’.
‘none’: no reduction will be applied, ‘mean’: the output losses will be divided by the target lengths

and then the mean over the batch is taken. Default: ‘mean’

Inputs:

log_probs: Tensor of size (T, N, C') where C=number of characters in alphabet including

blank,
T=input length, and N = batch size. The logarithmized probabilities of the outputs (e.g. obtained with
torch.nn.functional.log_softmax()).

targets: Tensor of size (IV, S) or (sum(target_lengths)).
Targets (cannot be blank). In the second form, the targets are assumed to be concatenated.

input_lengths: Tuple or tensor of size (IN).
Lengths of the inputs (must each be < T')

target_lengths: Tuple or tensor of size (N)
Lengths of the targets

Example:

>>> ctc_loss = nn.CTCLoss()

>>> log_probs = torch.randn(50, 16, 20).log_softmax(2).detach().requires_grad_()
>>> targets = torch.randint(1, 20, (16, 30), dtype=torch.long)

>>> input_lengths = torch.full((16,), 56, dtype=torch.long)

>>> target_lengths = torch.randint (10,30, (16,), dtype=torch.long)

Shortcuts

torch.nn
Parameters
+ Containers
+ Convolution layers
+ Pooling layers
+ Padding layers
+ Non-linear activations (weighted sum, nonlir
+ Non-linear activations (other)
+ Normalization layers
+ Recurrent layers
+ Linear layers
+ Dropout layers
+ Sparse layers
+ Distance functions
+ Loss functions
+ Vision layers
+ DataParallel layers (multi-GPU, distributed)
+ Utilities
torch.nn.functional
+ Convolution functions
+ Pooling functions
+ Non-linear activation functions
+ Normalization functions
+ Linear functions
+ Dropout functions
+ Sparse functions
+ Distance functions
+ Loss functions
+ Vision functions
+ DataParallel functions (multi-GPU, distribute

torch.nn.init
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Baidu CTC
[Amodei+(2015)]

Optimization of computational cost of CTC dynamic

programming
Multiple GPUs

Architecture optimization (BLSTM -> GRU, use of CNN)
Use 12,000 hours of data for training

Data augmentation (noise)

Read Speech
Test set DS1 DS2 Human
WSJ eval’92 4.94 3.60 5.03

WSJ eval’93 6.94
LibriSpeech test-clean  7.89
LibriSpeech test-other 21.74

4.98
5.33
13.25

8.08
5.83
12.69




Google CTC
[Soltau+(2016)]

Word-level CTC, conventional BLSTM
No language model

125,000 hours of training data (!) from Youtube

Spoken WER{LS
Model 4 Layers Outputs Params Vocab OOV(%) w/LM (/o LM
C YT 7x1000 6400  43m 500000 024 123  —
CTC spoken words  7x1000 82473  116m 82473 063 116 120

7
Word-level CTC obtains comparable performance (even without

LM)
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Summary

 CIC

— One promising direction of end-to-end
— No language model (but it can be combined with an LM)
— Still based on conditional independence assumptions and Markov model
— CTCis really end-to-end?
 Can we use it to any of sequence to sequence task?

— The alignment should be monotonic (HMM like task, it cannot be applied to
machine translation)

— The input length must be longer than the output length (it cannot be applied to
speech synthesis)

 Attention
— Another end-to-end



Today’s agenda

* Introduction to end-to-end speech recognition
e Connectionist Temporal Classification (CTC)
* Attention



Speech recognition pipeline

G ONW T UW

GOW Z T UW

“I want to go to

Johns Hopkins campus”
Feature Acoustic Lexicon Language
extraction modeling modeling

go to”
“go two”
(19 »
go too
“goes to”
“goes two”
“goes too”

p(O|L) p(LIW)  p(W)




Speech recognition pipeline

G ONW T UW
GOW Z T UW

“l want to go to

Feature
extraction

Attention-based encoder decoder

] Johns Hopkins campus”

“go 'tO”

(14 go tWO »
(14 »
go too
“goes to”
“goes two”

“goes too”

p(O[L)  p(L|W)

p(W)
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Attention based encoder-decoder

Let C = (¢; € U|j =1, ...,]), be a character sequence

— U : set of characters
Let O = (o, € RP|t =1, ...,T), be a sequence of D

dimensional feature vectors
C = argmax{p(C|0)

Problem: T and J are different, and we cannot use normal
neural networks

Sequence to sequence is a solution to deal with it



Problem of original encoder-decoder architecture

p(10) = | | p(glerj-nb'p)
J
* We cannot explicitly connect the relationship between input and output (an

alignment property)
— No explicit connection with between frame-level activations h’; with output labels y;

Instead, we consider the following extension
p(C10) = | [p(ejlers13)
]

— V; has an explicit dependency for character ; ;

44



Attention mechanism

p(C|0) = 1_[ p(cjlcl:j—li V])
J

T
D
t=1"7

Compute the assignment probability for each output j from a neural network
aj = {ajt|t = 1, ,T} € ]RT, 0< ajt < 1,2’{:1 ajt =1
a;; is obtained by using a neural network

Obtain the context vector

45



Normal arrow:
high probability
Dashed arrow:
low probability
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The attention mechanism performs a soft alignment

!/
t *V = tlath

* Attention weight a;;

determines whether encoder
h', is assigned to a character
cj or not

— a;; = 0: no assignment

—a;; # 0: assigned




The attention mechanism performs a soft alignment

 There is no constraint for the alignment

 The order can be changed (good for machine translation, but it
does not happen in speech recognition)

Non monotonic

51



Examples of wrong alignments

11111

id: (20040717_152947 A010409 B010408-A-057045-057837)
Reference

BERURMEBIURLEI TEIEMUREEX TR ENIL
ZEARAEREBES M

MTL

Scores: (#Correctness #Substitution #Deletion #Insertion) 28 2 3 45
BERURMBENROB TEIEMRIAREEXTMAEN
MRMFMEBNRLEB TEIEMAOREEXITITREN T U
MEBWRLOB THEEMRALRETE XTI ERAN

s oA

i
At
i
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Difference in training and recognition

* During training

— 0 = argmaxg [1; p(gjlc1.-1, V)
— We use the transcriptions for ¢;.;_1
* During recognition

~ € = argmax. [1; p(gjlc1j-1,V))

— However, we don’t know the correct transcription ¢y, during recognition
— We use estimated history ¢;.;_; instead of the correct transcription

- mismatch of training and recognition

— Recognition result is stopped when we observe the “eos” symbol

— argmax, is impossible = Approximately only consider possible high-score hypotheses
(beam search)



Summary of attention encoder-decoder

* No conditional independence assumption
— No need for pronunciation lexicon
— Attention & Encoder: acoustic model
— Decoder: language model
— Combine acoustic and language
models with single network

e Attention model is too flexible for alignment
issues

* Not easy to combine the language model trained
with a bunch of text data



Google’s Experiments (12,500 hours)

* They use huge amount of training data (pair data)
e 12,500 hours

* A lot of techniques in addition to a simple end-to-end ASR

* End-to-End ASR system finally achieve
* Classical HMM system (Hybrid DNN/HMN syste



Experiments (< 80 hours, Nov 2018)

* Word Error Rate [%] in English Wall Street Journal (WSJ) task

_mm
ESPnet | ) Our best end-to-end

Attention model + word 3-gram LM - 9'3(
[Bahdanau 2016]
CTC + word 3-gram LM [Graves 2014] - 8.2
CTC + word 3-gram LM [Miao 2015] - 7.3
Attention model + word 3-gram LM [Chorowski 9.7 6.7
2016]
End-to-end best
Hybrid CTC/attention, multi-level LM - 5.6
Wav2Letter with gated convnet - 5.6
HMM/DNN + sMBR + word 3-gram LM 6.4 3.6 DNN/HMM

HMM/DNN + sMBR + word RNN-LM 56 2.6 (pipeline) best



Why HMM-based classical ASR is better than
End-to-End ASR?

e Classical HMM

“go .to”

EE% ‘96 to0” W = argmax max p(O|L)p(L|W)p(W)
“goes to” %% L
“goes two”

“goes too”

p(OIL) \p(LIW)  p(W)

* We can separat ain acoustic, lexicon, and language model

* We can incorporate pronunciation dictionary information through p(L|W)

* We can train the language model p(W) only with text (newspaper, web, etc.)

On the other hand end-to-end ASR always require the pair data to train p(W|0)
(We can incorporate a language model p(W) by p(W)%*p(W|0) heuristically.)

57



HMM/DNN vs. CTC vs. Attention

Conditional independence assumptions
Language models
Use of pronunciation lexicon information

Implementation




CTC vs. HMM vs. Attention

HMM CTC
p(W|0) p(C|0)
With Bayes rule and CIA (separate acoustic, lexicon, and No Bayes rule, but CIA (separate acoustic and language
language models) model)
D p(0,ZILYpLIWIPW) > p(C1D)p(210)
ZL Z
1%t order Markov and frame-level decomposition 1%t order Markov and frame-level decomposition
p(01Z)p(Z|L) = [l p(oelze)p(2¢]|z¢-1, L) p(Z10)p(C|Z) = [t p(2:10) p(z¢lze—1, C)p(C)
Replace the likelihood function p(o;|z;) with a DNN Replace the frame-level posterior distribution p(z¢|0)
based on the pseudo likelihood trick with a DNN
Attention
p(C|0)

No CIA, no separate LM

J

1_[ p(cjlcrj—1, V), v; = z a;ch’;
j
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