# Speech Enhancement and Diarization

Introduction to Human Language Technology

Matthew Maciejewski October 31, 2023



#### or, towards: The Cocktail Party Problem<sup>1</sup>

<sup>1</sup>E.C. Cherry, Some Experiments on the Recognition of Speech, with One and with Two Ears. The Journal of the Acoustical Society, 1953



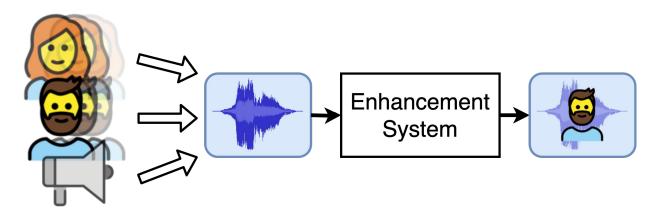
# **Speech Enhancement** (and Separation)



## What is speech enhancement?

 Recordings of speech often have a lot of degradation and interfering sounds

 Speech enhancement is the task of removing interferences or reconstructing the clean speech





## Why do we care?

- Human listening can always be the end goal
- Degraded audio often leads to degraded performance of downstream systems
- Robust speech technology often integrates techniques developed in enhancement



#### **Mathematical Formulation**

**Input:** x(t) = s(t) + n(t)

**Output:**  $y(t) = \hat{s}(t)$ 

We can also treat n(t) more precisely:

**Reverberation:**  $x(t) = s(t) * h_{RIR}(t)$ 

Separation:  $x(t) = s_1(t) + s_2(t)$ 

All together:

$$x(t) = \sum_{c=1}^{C} [s_c(t) * h_c(t)] + \sum_{k=1}^{K} n_k(t)$$



#### **Performance Evaluation**

#### Full Reference

- SI-SDR, SNR, (SDR, SIR, SAR), ... SI-SDR =  $10 \log_{10} \frac{|s|^2}{|s - B\hat{s}|^2}$
- PESO, STOI, POLQA, ...

#### No Reference

- Human listening tests! (MOS)
- ITU P.563, SRMRnorm, ...
- DNSMOS, SQAPP, ...
- Downstream Evaluation
  - Impact on downstream speech tasks

for  $\beta$  s.t.  $s \perp s - \beta \hat{s}$ 

# **Significance of Ground Truth**

Issues of ground truth are a significant aspect of waveform-level tasks

- Non-full-reference metrics have large downsides and typically require synthetic mixtures
- Neural network training targets typically require targets and also require synthetic mixtures
  - Domain mismatch can be a significant problem
- Practical approaches often avoid trying to directly optimize the output waveform



## **General Approach**

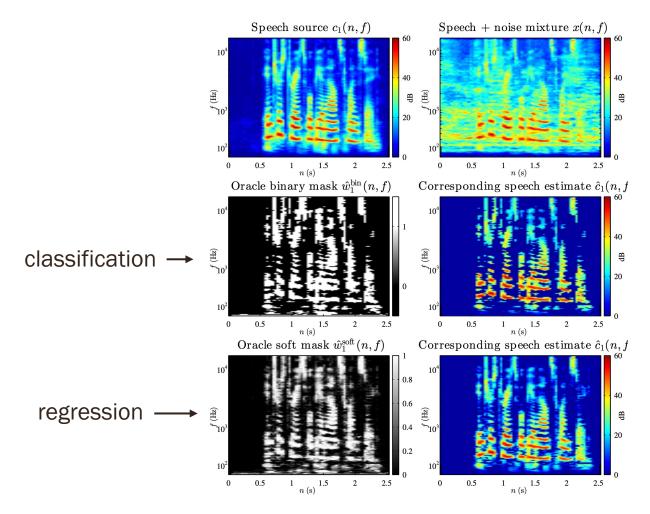
 Speech enhancement methods generally fall under the umbrella of "filtering", with some further broad categorizations:

> temporal filtering vs. spectral filtering estimation vs. decomposition

• These distinctions are in some sense arbitrary and can often be considered equivalent



#### **Mask-Based Enhancement**





10 Image credit: Vincent, et al. Audio Source Separation and Speech Enhancement

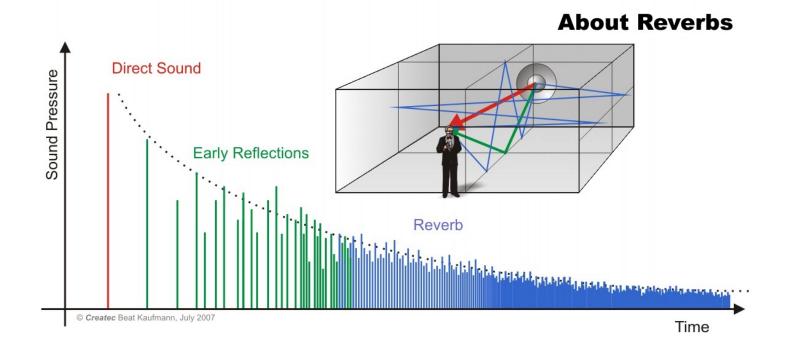
#### How do we estimate the filters?

- Can be learning-free, unsupervised, supervised
- Estimation of speech presence probability, noise distribution, SNR, power spectra, etc.
- Nonnegative Matrix Factorization (NMF)
  - Decompose magnitude/power spectrum into set of distinct basis spectra
- Independent Component Analysis (ICA)
  - Assumes mixture of mutually-independent stochastic source signals



#### Reverberation

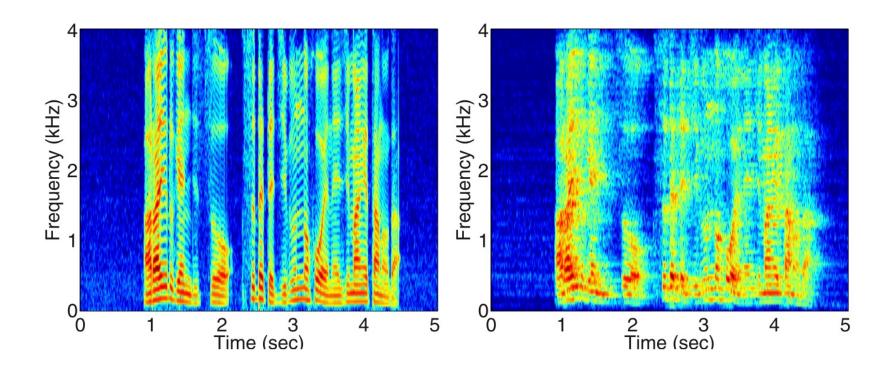
 Room Impulse Response (RIR) captures room reflections and mixes via convolution





## **Spectral Effect of Reverberation**

Reverb results in spectral smearing





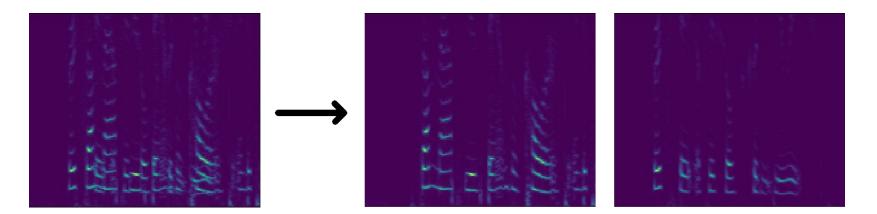
#### **De-Reverberation**

- Most successful practical approach is Weighted Prediction Error (WPE)<sup>1,2</sup> dereverberation
- The late tail reverberation is estimated and cancelled via delayed linear prediction
  - Iterative procedure to continually update inverse filter
- Avoiding early reflections minimizes corruption of direct path and issue of relative non-stationarity
- "Deep" extension via neural speech Power Spectral Density (PSD) estimation<sup>3</sup>



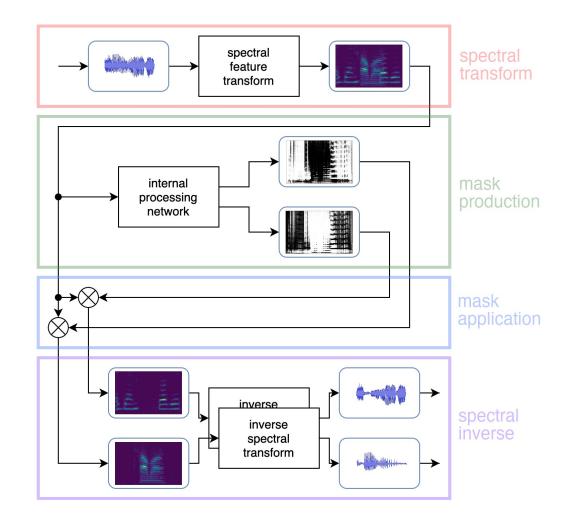
# **Speech Separation**

- Speech separation aims to estimate singlespeaker waveforms from overlapping speech
- Relies on the spectral sparsity of speech





# **Separation Pipeline**





# **Challenges in Training**

Foundational approaches on mask-based loss:

- Deep Clustering (DPCL)
  - Extract embedding for each STFT bin
  - Ensure self-similarity of dominant bins from a speaker
- Permutation-Invariant Training (PIT)
  - Compute minimum loss across all output permutations, backpropagate from best permutation
- State-of-Art systems dominated by learned spectral transforms with SI-SDR PIT loss



# **Target Speaker Extraction**

- Given a recording and an enrollment utterance or speaker representation, produce the clean speech of the enrolled speaker
- Has elements of both speech separation and speech enhancements



### **Multichannel Enhancement**

- Collecting audio simultaneously with multiple microphones gives more information for the underlying signals
- Particularly: multiple sensors allows for localization, and multiple sources generally have different locations



#### **Formulation**

 $\mathbf{x}(t) = \sum_{j=1}^{J} \mathbf{c}_{j}(t) \xrightarrow{\text{point source}}_{\text{point source}} \text{ just } \mathbf{c}_{j}(t)$  $\mathbf{x}(t) = \sum_{j=1}^{J} \mathbf{c}_{j}(t) \xrightarrow{\text{point source}}_{\text{point source}} \text{ (time-invariant)}_{\text{spatialization}} \mathbf{c}_{j}(t) = \mathbf{a}_{j}(t) * s_{j}(t)$  $\mathbf{x} \in \mathbb{R}^{I \times T} \qquad \mathbf{c} \in \mathbb{R}^{I \times T} \text{ spatialized}_{\text{sources}} \qquad \mathbf{a}_{j}(t) = \left[a_{1j}(t), \dots, a_{Ij}(t)\right]^{T}$  $\mathbf{c} = \left[a_{1j}(t), \dots, a_{Ij}(t)\right]^{T}$  $\mathbf{c} = \mathbf{R}^{I} \mathbf{c}_{j}(t) = \mathbf{c}_{j}(t) + \mathbf{c}_{j}(t)$ 

Can approximate in STFT domain:

 $a_j(n, f) \sim a_j(f)$  $c_j(n, f) = a_j(f)s_j(n, f)$ x(n, f) = A(f)s(n, f)

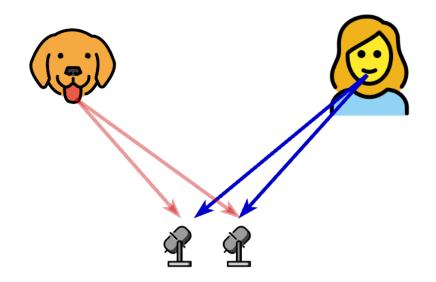
$$\boldsymbol{a}_{j}(f) \rightarrow \boldsymbol{d}_{j}(f)$$
$$\boldsymbol{d}_{j}(f) = \begin{bmatrix} \frac{1}{\sqrt{4\pi}r_{1j}}e^{-2j\pi r_{1j}v_{f}/c} \\ \vdots \\ \frac{1}{\sqrt{4\pi}r_{Ij}}e^{-2j\pi r_{Ij}v_{f}/c} \end{bmatrix} \approx \begin{bmatrix} e^{-2j\pi r_{1j}v_{f}/c} \\ \vdots \\ e^{-2j\pi r_{Ij}v_{f}/c} \end{bmatrix}$$

"steering vector":



#### Beamforming

• "Delay and sum" beamforming aligns target signal temporally and misaligns other signals for constructive/destructive interference





## **TDOA Estimation**

- Beamforming requires the "time difference of arrival" (TDOA)
- Generalized Cross-Correlation with Phase Transform (GCC-PHAT)<sup>1</sup>
- Minimum Variance Distortionless Response (MVDR) beamformer is computed in STFT domain by minimizing the power of the interfering signal
  - Weights can be computed from speech TF mask
  - Amenable to neural estimation



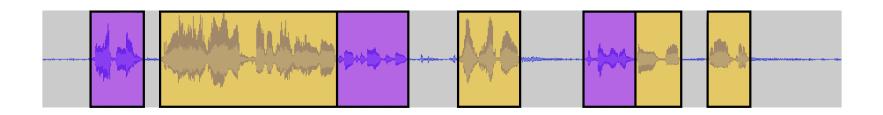
# ...questions?



# (Speaker) Diarization



# What is speaker diarization?



Who spoke when?

\*other types of diarization exist, most notably language diarization



## Why do we care?

- Many speech systems "malfunction" in multitalker scenarios
  - Closed captioning or meeting transcription
  - Target speaker recognition
- Conversational analysis
  - Biomarkers for emotional state
  - Study of child language acquisition
  - Social role (e.g. interruptions)



#### **Mathematical Formulation**

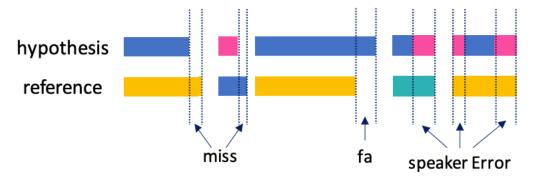
• "label-free" time series multi-label classification

$$x[t] \longrightarrow System \longrightarrow y[t]$$
$$y \in \{0, 1\}^{T \times S}$$

Order of speakers  $s_i \in S$  does not matter



#### **Metrics**



• Diarization Error Rate (DER%)

 $\text{DER} = \frac{false\_alarm + missed\_speech + speaker\_error}{total\_speech}$ 

• Jaccard Error Rate (JER%)

$$JER = \frac{1}{S} \sum_{i=1}^{S} \frac{false\_alarm_i + missed\_speech_i}{speech_i}$$

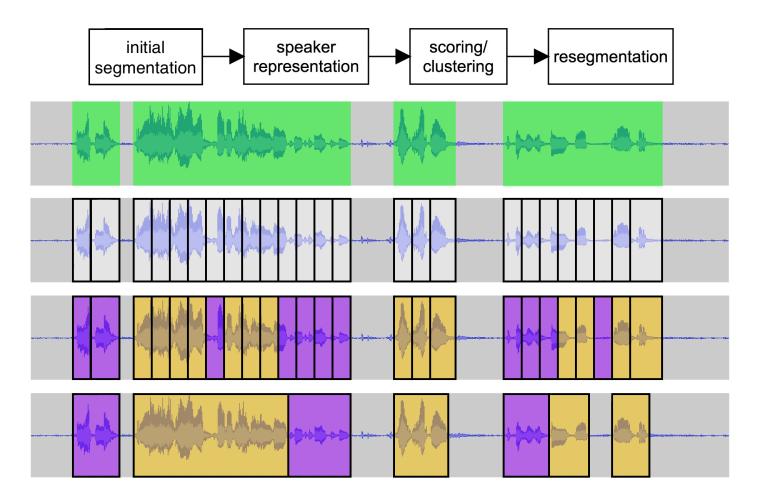


# **Approaches to Diarization**

- Traditional "Clustering" Approaches
  - Multi-stage pipelines with independent components
  - Individually tuned
  - Less conducive to overlap detection
- Neural (End-to-End) Approaches
  - Trained to produce outputs directly
  - Can be jointly optimized
  - Data hungry



# **Traditional Approach**





# **Initial Segmentation**

- Speech Activity Detection (SAD)
  - Basic speech presence classifier
  - Generally neural, statistical has been used
- Less commonly can be more sophisticated
  - Speaker change detection
  - Overlap detection



### **Speaker Representation**

- Out-of-the-box Speaker ID systems
  - i-vectors, x-vectors, d-vectors
- Typically extracted under a sliding window
- Scoring can be tuned to test conditions or smaller speaker variability



# Clustering

- Many clustering approaches
  - Agglomerative clustering
  - Spectral clustering
- Major challenge is speaker counting
  - Oracle (not necessarily optimal!)
  - Speaker counting
  - Thresholding/Calibration



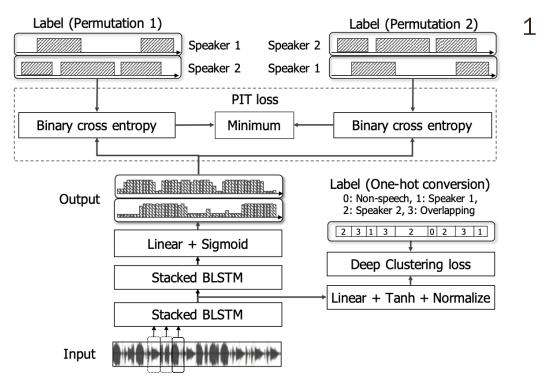
#### Resegmentation

- Variational Bayes HMM of x-vectors (VBx)
  - Probabilistic model treating x-vectors as observation of latent states corresponding to speakers
  - Models the temporal aspect of conversations
- Target Speaker Voice Activity Detection (TS-VAD)
  - Speaker-specific speech activity classifier based on input speaker representation
  - Handles overlap!



#### **Neural Diarization**

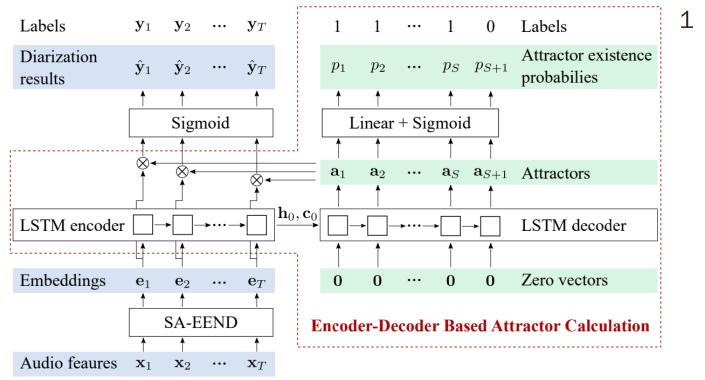
 Most methods derived from End-to-End Neural Diarization (EEND)<sup>1</sup> approach





### **Extension to Arbitrary Speakers**

 Encoder-Decoder Attractors (EEND-EDA)<sup>1</sup> are used to model a variable number of speakers





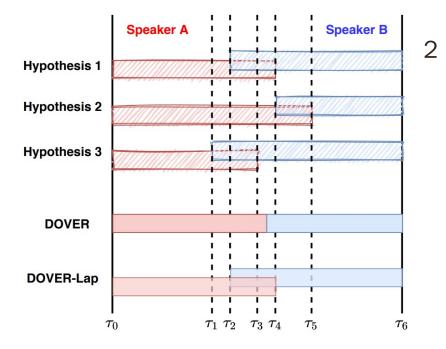
### **Practical Considerations**

- Large amounts of data are required
- Memory requirements in training
  - Someone may talk long periods apart
- Processing long recordings
  - Must track speakers across block processing



#### **System Ensembling**

- Different systems may have different strengths and weaknesses (e.g. traditional vs. neural)
- DOVER<sup>1</sup> and overlap-aware extension DOVER-Lap<sup>2</sup>





### **Multichannel Diarization**

- Multiple microphones improve localization, and different talkers will be in different locations
  - They may, however, move around
- Directional information from beamforming may be integrated into the system
- Multiple audio signals may be used directly in the system, integrating beamforming implicitly



#### **Multimodal Diarization**

- Video may contain useful information for diarization and we would like to use it
- Audio-visual diarization has been successfully done using lip region of interest features<sup>1</sup>
  - Occlusions and out-of-frame issues pose a challenge



# ...questions?

