
Information Retrieval

Kevin Duh
Johns Hopkins University

Acknowledgments

These slides draw heavily from these excellent sources:
• Paul McNamee’s JSALT2018 tutorial:

– https://www.clsp.jhu.edu/wp-content/uploads/sites/75/2018/06/2018-
06-19-McNamee-JSALT-IR-Soup-to-Nuts.pdf

• Doug Oard’s Information Retrieval Systems course at UMD
– http://users.umiacs.umd.edu/~oard/teaching/734/spring18/

• Christopher D. Manning, Prabhakar Raghavan, Hinrich Schütze,
Introduction to Information Retrieval, Cambridge U. Press. 2008.
– https://nlp.stanford.edu/IR-book/information-retrieval-book.html

• W. Bruce Croft, Donald Metzler, Trevor Strohman, Search Engines:
Information Retrieval in Practice, Pearson, 2009
– http://ciir.cs.umass.edu/irbook/

https://www.clsp.jhu.edu/wp-content/uploads/sites/75/2018/06/2018-06-19-McNamee-JSALT-IR-Soup-to-Nuts.pdf
https://www.clsp.jhu.edu/wp-content/uploads/sites/75/2018/06/2018-06-19-McNamee-JSALT-IR-Soup-to-Nuts.pdf
http://users.umiacs.umd.edu/~oard/teaching/734/spring18/
https://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://ciir.cs.umass.edu/irbook/

I never waste
memory on
things that can
easily be stored
and retrieved
from elsewhere.
-- Albert Einstein

Image source: Einstein 1921 by F Schmutzer
https://en.wikipedia.org/wiki/Albert_Einstein#/media/File:Einstein_1921_by_F_Schmutzer_-_restoration.jpg

What is Information Retrieval (IR)?

1. Information retrieval is a field concerned with
the structure, analysis, organization, storage,
searching, & retrieval of information.

 (Gerard Salton, IR pioneer, 1968)

2. Information retrieval focuses on the efficient
recall of information that satisfies a user’s
information need.

QUERY:
NullPointer Exception randomize() FastMath

INFO NEED: I need to understand why I’m
getting a NullPointer Exception when

calling randomize() in the FastMath library

Web documents
that may be relevant

Structure of IR System

Query

Representation
Function

Representation
Function

Documents

INDEX

User with
Information Need

Query Representation Document Representation

Scoring
Function

Returned
Hits

IR System

Query

Representation
Function

Representation
Function

Documents

INDEX

User with
Information Need

Query Representation Document Representation

Scoring
Function

Returned
Hits

IR System

(1) Indexing

(2) Query Processing

(3)
Scoring

(4) Evaluation

Index vs Grep

• Say we have collection of Shakespeare plays
• We want to find all plays that contain:

• Grep: Start at 1st play, read everything and
filter if criteria doesn’t match (linear scan, 1M words)

• Index (a.k.a. Inverted Index): build index data
structure off-line. Quick lookup at query-time.

These examples/figures are from: Manning, Raghavan, Schütze, Intro to Information Retrieval, CUP, 2008

QUERY:
Brutus AND Caesar AND NOT Calpurnia

The Shakespeare collection as
Term-Document Incidence Matrix

Matrix element (t,d) is:
 1 if term t occurs in document d,
 0 otherwise

These examples/figures are from: Manning, Raghavan, Schütze, Intro to Information Retrieval, CUP, 2008

The Shakespeare collection as
Term-Document Incidence Matrix

Answer: “Antony and Cleopatra”(d=1), “Hamlet”(d=4)

These examples/figures are from: Manning, Raghavan, Schütze, Intro to Information Retrieval, CUP, 2008

QUERY:
Brutus AND Caesar AND NOT Calpurnia

Inverted Index Data Structure

These examples/figures are from: Manning, Raghavan, Schütze, Intro to Information Retrieval, CUP, 2008

document id (d), e.g. “Brutus” occurs in d=1, 2, 4...term (t)
Importantly, it’s sorted list

Efficient algorithm for List Intersection
(for Boolean conjunctive “AND” operators)

QUERY:
Brutus AND Calpurnia

These examples/figures are from: Manning, Raghavan, Schütze, Intro to Information Retrieval, CUP, 2008

Pointer p1 Pointer p2

Time and Space Tradeoffs

• Time complexity at query-time:
– Linear scan over postings
– O(L1 + L2) where Lt is length of posting for term t
– vs. grep through all documents O(N), L << N

• Time complexity at index-time:
– O(N) for one pass through collection
– Additional issue: efficient adding/deleting documents

• Space complexity (example setup):
– Dictionary: Hash/Trie in RAM
– Postings: Array on disk

Quiz: How would you process these queries?

Which terms do you intersect first?

Think: What terms to process first? How to handle OR, NOT?

QUERY:
Brutus AND Caesar AND Calpurnia

QUERY:
Brutus AND (Caesar OR Calpurnia)

QUERY:
Brutus AND Caesar AND NOT Calpurnia

Optional meta-data in inverted index

• Skip pointers: For faster intersection, but extra
space

These examples/figures are from: Manning, Raghavan, Schütze, Intro to Information Retrieval, CUP, 2008

Pointer p1

Pointer p2

Optional meta-data in inverted index

• Position of term in document: Enables phrasal
queries

QUERY:
“to be or not to be”

term (t)
document frequency

term occurs in document d=4
with term frequency of 5,
at positions 17, 191, 291, 430, 434

Index construction and management

• Dynamic index
– Searching Twitter vs. static document collection

• Distributed solutions
– MapReduce, Hadoop, etc.
– Fault tolerance

• Pre-computing components for score function

à Many interesting technical challenges!

Query

Representation
Function

Representation
Function

Documents

INDEX

User with
Information Need

Query Representation Document Representation

Scoring
Function

Returned
Hits

IR System

(1) Indexing

We covered this

Next up

Representing a Document
as a Bag-of-words (but what words?)

The QUICK, brown foxes jumped over the lazy dog!

Tokenization

The / QUICK / , / brown / foxes / jumped / over / the / lazy / dog / !

Stop word removal, Stemming, Normalization

quick / brown / fox / jump / over / lazi / dog

Index

Issues in Document Representation

• Language-specific challenges
• Polysemy & Synonyms:
– “bank” in multiple senses, represented the same?
– “jet” and “airplane” should be same?

• Acronyms, Numbers, Document structure
• Morphology

Central Siberian Yupik morphology example from E. Chen & L. Schartz, LREC 2018:
http://dowobeha.github.io/papers/lrec18.pdf

Query

Representation
Function

Representation
Function

Documents

INDEX

User with
Information Need

Query Representation Document Representation

Scoring
Function

Returned
Hits

IR System

(2) Query Processing

Query Representation

• Of course, the query string must go through
the same tokenization, stop word removal and
normalization process like the documents

• But we can do more, esp. for free-text queries
– to guess user’s intent & information need

Keyword search vs. Conceptual search

• Keyword search / Boolean retrieval:

– Answer is exact, must satisfy these terms

• Conceptual search (or just “search” like Google)

– Answer may not need to exactly match these terms
– Note this naming may not be standard

FREE-TEXT QUERY:
Brutus assassinate Caesar reasons

BOOLEAN QUERY:
Brutus AND Caesar AND NOT Calpurnia

Query Expansion
for “conceptual” search

• Add terms to the query representation
– Exploit knowledge base, WordNet, user query logs

ORIGINAL FREE-TEXT QUERY:
Brutus assassinate Caesar reasons

EXPANDED QUERY:
Brutus assassinate kill Caesar reasons why

Pseudo-Relevance Feedback

• Query expansion by iterative search

Returned
Hits v1

IR System

Returned
Hits v2

IR System

ORIGINAL QUERY:
Brutus assassinate Caesar reasons

EXPANDED QUERY:
Brutus assassinate Caesar
reasons + Ides of March

Add words
extracted from

these hits

Query

Representation
Function

Representation
Function

Documents

INDEX

User with
Information Need

Query Representation Document Representation

Scoring
Function

Returned
Hits

IR System

(3)
Scoring

Motivation for scoring documents

• For keyword search, all documents returned
should satisfy query, and are equally relevant

• For conceptual search:
– May have too many returned documents
– Relevance is a gradation
à Score documents and return a ranked list

TF-IDF Scoring Function

• Given query q and document d

terms t in q Term frequency (raw count) of t in d
Inverse document frequency

Number of documents
with >=1 occurrence of t

Total number of documents

TF-IDF

Vector-Space Model View

• View documents (d) & queries (q) each as vectors,
– Each vector element represents a term
– whose value is the TF-IDF of that term in d or q

• Score function can be viewed as e.g. Cosine
Similarity between vectors

These examples/figures are from: Manning, Raghavan, Schütze, Intro to Information Retrieval, CUP, 2008

Alternative Scoring Functions: BM25

Query Document

Inverse Document
Frequency of
query term

Frequency of
query term in document

Document
length ratio

Tunable Hyperparameters

score(q, d) =
X

t2q

idft ⇥
tft,d · (k1 + 1)

tft,d + k1 · (1� b+ b · |D|
avgdl)

k1: Saturation for tf b: Document length bias

Two-Stage Scoring

PRE-ORDERED LIST:
Thousands of Pages

ORDERED LIST

COMPLEX
(SLOWER)
RANKING
FUNCTION

INDEX:
Trillions
of Pages

FAST
BOOLEAN
SEARCH
& VECTOR
SPACE MODEL

Motivation of Two-Stage Scoring with
``Learning-to-Rank” methods

• Machine learning approach:
– Enables more features (signal sources)
– 1st stage aims for high Recall, 2nd stage aims for high Precision

• Useful features based on Query (q) and Document (d)
– Various vector space model results, applied to text, URL, title
– Click-through: e.g. How many times d is clicked given q vs. How

many times d is skipped
– Results after Query-expansion

• Useful features based on Document only (static)
– Popularity of page: #Likes, #inlinks, Pagerank
– Domain structure: main page or subpage

Example features

URL match?
Word match?

Recently updated?
Popular page?

User intention
match?

Not spam?

Clickthrough log?

Problem Formulation

1. Feature extraction
<query, doc1> à vector x1
<query, doc2> à vector x2
<query, doc3> à vector x3

2. Apply ranking function & sort
F(x1) = 3
F(x2) = 1
F(x3) = 4

What function class for F()?
Assume linear weights: F(xi) = wTxi
Learn weights w that replicate ranking on training set

à Rank 2
à Rank 3 (worst)
à Rank 1 (best)

Training Set
Query 1
<query, doc1> à vector x1
<query, doc2> à vector x2
<query, doc3> à vector x3

Labels for each query-doc pair
label(x1) = 3
label(x2) = 1
label(x3) = 4

Query 2
<query, doc1> à vector x1
<query, doc2> à vector x2
<query, doc3> à vector x3
<query, doc4> à vector x4

Labels for each query-doc pair
label(x1) = 3
label(x2) = 2
label(x3) = 1
label(x4) = 0

(Very relevant)
(Relevant)
(Slightly relevant)
(Irrelevant)

Where does the label come from?

• Human annotation
– High quality, but expensive

• Click-through logs
– Noisy, but cheap/abundant

Notation

document for query n: d(n)i i = 1, . . . , In

query: q(n) n = 1, . . . , N

label for each query-doc pair: l(n)i 2 Z

vector of D features per query-doc: x(n)
i 2 RD

Ranking Function: F (x(n)
i) = wTx(n)

i

Training set: {q(n), {x(n)
i , l(n)i }}

Different training approaches

• How to optimize something on a set with a
sort operation? Reduce to traditional
regression/classification problems

Training Approach Reduction
Point-wise Document
Pair-wise Two Documents
List-wise All Documents per query

Point-wise Approach

Ranking Function: F (x(n)
i) = wTx(n)

i

Training set: {q(n), {x(n)
i , l(n)i }}

Training Objective:

X

n

X

i

(F (x(n)
i)� l(n)i)

2

Find w that makes each F(x) equal to its label

Training Objective:

X

n

X

i

(F (x(n)
i)� l(n)i)

2

Solve with linear regression!

!
X

z

(F (xz)� lz)
2 where z ranges over all i, n

Pair-wise Approach

Ranking Function: F (x(n)
i) = wTx(n)

i

Training set: {q(n), {x(n)
i , l(n)i }}

Find w that gives every pair the correct ranking
Training Objective:

F (x(n)
i) > F (x(n)

j) 8 i, j s.t. l(n)i > l(n)j

Solve with binary classification!
Make a new sample out of every pair
Give new label: Positive for i,j pairs
 Negative for j,i pairs

Training Objective:

F (x(n)
i) > F (x(n)

j) 8 i, j s.t. l(n)i > l(n)j

! F (x(n)
i)� F (x(n)

j) > 0 8 i, j s.t. l(n)i > l(n)j

! wTx(n)
i � wTx(n)

j > 0 8 i, j s.t. l(n)i > l(n)j

! wT (x(n)
i � x(n)

j) > 0 8 i, j s.t. l(n)i > l(n)j

! wT (�(n)ij) > 0 8 i, j s.t. l(n)i > l(n)j

Disclaimer
• We’ve focused on very simple ranking functions (linear)

for simplicity
• In practice, more complex functions (e.g. decision

trees, neural nets) are common
• Some functions use “dense” word embeddings as

opposed to “sparse” features described previously
• Recommend further reading:
– Dawei Yin, et. al. “Ranking Relevance in Yahoo Search”,

Proceedings of KDD2016
– Omar Khattab & Matei Zaharia. “ColBERT: Efficient and

Effective Passage Search via Contextualized Late
Interaction over BERT”, SIGIR 2020

Embeddings & Neural Nets for Scoring

From: Khattab (SIGIR2020) https://arxiv.org/pdf/2004.12832.pdf

https://arxiv.org/pdf/2004.12832.pdf

Query

Representation
Function

Representation
Function

Documents

INDEX

User with
Information Need

Query Representation Document Representation

Scoring
Function

Returned
Hits

IR System

(4) Evaluation

Evaluation: How good/bad is my IR?

• Evaluation is important:
– Compare two IR systems
– Decide whether our IR is ready for deployment
– Identify research challenges

• Two Ingredients for a trustworthy evaluation:
– Answer Key
– A Meaningful Metric: given query q, returned

ranked list, and answer key, computes a number

Precision and Recall

precision =
A

A + B

A B
C D

relevant
not

relevant

retrieved

not
retrieved

recall =
A

A + C
average precision = area under curve

0% 100%

100 %

0%

precision

recall

“Type two errors”
“Errors of omission”
“False negatives”

“Type one errors” “Errors
of commission” “False
positives”

From Paul McNamee’s JSALT 2018 tutorial slides

Issues with Precision and Recall

• We often don’t know true recall value
– For large collection, impossible to have annotator

read all documents to assess relevance of a query

• Focused on evaluating sets, rather than
ranked lists

We’ll introduce Mean Average Precision (MAP) here. Note that
IR evaluation is a deep field, worth another lecture by itself!

100
 90
 80
 70
 60
 50
 40
 30
 20
 10
 0

0 10 20 30 40 50 60 70 80 90 100

P
R
E
C
I
S
I
O
N

RECALL

10 relevant: Rq={d3,d5,d9,d25,d39,d44,d56,d71,d89,d123}
Ranked List: d123, d84 , d56, d6, d8, d9, d511, d129, d187, d25, d38m, d48, d250, d113, d3

1/1

2/3

3/6

4/10

5/15

From Paul McNamee’s JSALT 2018 tutorial slides

Example for 1 query: precision & recall at
different positions in ranked list

Average Precision (AP):
(1/1 + 2/3 + 3/6 + 4/10 + 5/15) / 5 = 0.58

Mean Average Precision (MAP):
Mean of AP over multiple queries

• First ranked doc d123 is relevant, which
is 10% of the total relevant. Therefore
Precision at the 1/10=10% Recall level
is 1/1=100%

• Next Relevant d56 gives us 2/3=66%
Precision at 2/10=20% recall level

Query

Representation
Function

Representation
Function

Documents

INDEX

User with
Information Need

Query Representation Document Representation

Scoring
Function

Returned
Hits

IR System

(1) Indexing

(2) Query Processing

(3)
Scoring

(4) Evaluation

