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I never waste 
memory on 
things that can 
easily be stored 
and retrieved 
from elsewhere.
-- Albert Einstein

Image source: Einstein 1921 by F Schmutzer
https://en.wikipedia.org/wiki/Albert_Einstein#/media/File:Einstein_1921_by_F_Schmutzer_-_restoration.jpg



What is Information Retrieval (IR)?

1. Information retrieval is a field concerned with 
the structure, analysis, organization, storage, 
searching, & retrieval of information. 

                        (Gerard Salton, IR pioneer, 1968)

2. Information retrieval focuses on the efficient 
recall of information that satisfies a user’s 
information need. 



QUERY: 
NullPointer Exception randomize() FastMath

INFO NEED: I need to understand why I’m 
getting a NullPointer Exception when 

calling randomize() in the FastMath library

Web documents 
that may be relevant



Structure of IR System 
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Index vs Grep

• Say we have collection of Shakespeare plays
• We want to find all plays that contain:

• Grep: Start at 1st play, read everything and 
filter if criteria doesn’t match (linear scan, 1M words)

• Index (a.k.a. Inverted Index): build index data 
structure off-line. Quick lookup at query-time.

These examples/figures are from: Manning, Raghavan, Schütze, Intro to Information Retrieval, CUP, 2008

QUERY: 
Brutus AND Caesar AND NOT Calpurnia



The Shakespeare collection as 
Term-Document Incidence Matrix

Matrix element (t,d) is: 
             1 if term t occurs in document d, 
             0 otherwise

These examples/figures are from: Manning, Raghavan, Schütze, Intro to Information Retrieval, CUP, 2008



The Shakespeare collection as 
Term-Document Incidence Matrix

Answer: “Antony and Cleopatra”(d=1), “Hamlet”(d=4) 

These examples/figures are from: Manning, Raghavan, Schütze, Intro to Information Retrieval, CUP, 2008

QUERY: 
Brutus AND Caesar AND NOT Calpurnia



Inverted Index Data Structure

These examples/figures are from: Manning, Raghavan, Schütze, Intro to Information Retrieval, CUP, 2008

document id (d), e.g. “Brutus” occurs in d=1, 2, 4...term (t)
Importantly, it’s sorted list



Efficient algorithm for List Intersection
(for Boolean conjunctive “AND” operators)

QUERY: 
Brutus AND Calpurnia

These examples/figures are from: Manning, Raghavan, Schütze, Intro to Information Retrieval, CUP, 2008

Pointer p1 Pointer p2 



Time and Space Tradeoffs

• Time complexity at query-time:
– Linear scan over postings
– O(L1 + L2) where Lt is length of posting for term t
– vs. grep through all documents O(N), L << N

• Time complexity at index-time:
– O(N) for one pass through collection
– Additional issue: efficient adding/deleting documents

• Space complexity (example setup):
– Dictionary: Hash/Trie in RAM
– Postings: Array on disk



Quiz: How would you process these queries?

Which terms do you intersect first?

Think: What terms to process first? How to handle OR, NOT?

QUERY: 
Brutus AND Caesar AND Calpurnia

QUERY: 
Brutus AND (Caesar OR Calpurnia)

QUERY: 
Brutus AND Caesar AND NOT Calpurnia



Optional meta-data in inverted index

• Skip pointers: For faster intersection, but extra 
space

These examples/figures are from: Manning, Raghavan, Schütze, Intro to Information Retrieval, CUP, 2008

Pointer p1 

Pointer p2 



Optional meta-data in inverted index

• Position of term in document: Enables phrasal 
queries

QUERY: 
“to be or not to be”

term (t)
document frequency

term occurs in document d=4
with term frequency of 5,
at positions 17, 191, 291, 430, 434 



Index construction and management

• Dynamic index
– Searching Twitter vs. static document collection

• Distributed solutions
– MapReduce, Hadoop, etc.
– Fault tolerance

• Pre-computing components for score function

à Many interesting technical challenges!
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Representing a Document 
as a Bag-of-words (but what words?)

The QUICK, brown foxes jumped over the lazy dog!

Tokenization

The / QUICK / , / brown / foxes / jumped / over / the / lazy / dog / !

Stop word removal, Stemming, Normalization

quick / brown / fox / jump / over / lazi / dog

Index



Issues in Document Representation

• Language-specific challenges
• Polysemy & Synonyms:
– “bank” in multiple senses, represented the same?
– “jet” and “airplane” should be same?

• Acronyms, Numbers, Document structure
• Morphology

Central Siberian Yupik morphology example from E. Chen & L. Schartz, LREC 2018:
http://dowobeha.github.io/papers/lrec18.pdf  
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Query Representation

• Of course, the query string must go through 
the same tokenization, stop word removal and 
normalization process like the documents

• But we can do more, esp. for free-text queries
– to guess user’s intent & information need



Keyword search vs. Conceptual search

• Keyword search / Boolean retrieval:

– Answer is exact, must satisfy these terms

• Conceptual search (or just “search” like Google)

– Answer may not need to exactly match these terms
– Note this naming may not be standard

FREE-TEXT QUERY: 
Brutus assassinate Caesar reasons

BOOLEAN QUERY: 
Brutus AND Caesar AND NOT Calpurnia



Query Expansion 
for “conceptual” search

• Add terms to the query representation
– Exploit knowledge base, WordNet, user query logs

ORIGINAL FREE-TEXT QUERY: 
Brutus assassinate Caesar reasons

EXPANDED QUERY:
Brutus assassinate kill Caesar reasons why



Pseudo-Relevance Feedback

• Query expansion by iterative search

Returned
Hits v1

IR System

Returned
Hits v2

IR System

ORIGINAL QUERY: 
Brutus assassinate Caesar reasons

EXPANDED QUERY:
Brutus assassinate Caesar 
reasons + Ides of March

Add words 
extracted from 

these hits



Query

Representation 
Function

Representation 
Function

Documents

INDEX

User with 
Information Need

Query Representation Document Representation

Scoring 
Function

Returned
Hits

IR System

(3) 
Scoring



Motivation for scoring documents

• For keyword search, all documents returned 
should satisfy query, and are equally relevant

• For conceptual search:
– May have too many returned documents
– Relevance is a gradation
à Score documents and return a ranked list



TF-IDF Scoring Function

• Given query q and document d

terms t in q Term frequency (raw count) of t in d
Inverse document frequency

Number of documents 
with >=1 occurrence of t

Total number of documents

TF-IDF



Vector-Space Model View

• View documents (d) & queries (q) each as vectors, 
– Each vector element represents a term
– whose value is the TF-IDF of that term in d or q

• Score function can be viewed as e.g. Cosine 
Similarity between vectors

These examples/figures are from: Manning, Raghavan, Schütze, Intro to Information Retrieval, CUP, 2008



Alternative Scoring Functions: BM25

Query Document

Inverse Document 
Frequency of
query term

Frequency of
query term in document

Document
length ratio

Tunable Hyperparameters

score(q, d) =
X

t2q

idft ⇥
tft,d · (k1 + 1)

tft,d + k1 · (1� b+ b · |D|
avgdl )

k1: Saturation for tf b: Document length bias



Two-Stage Scoring

PRE-ORDERED LIST:
Thousands of Pages

ORDERED LIST

COMPLEX 
(SLOWER)
RANKING
FUNCTION

INDEX:
Trillions
of Pages

FAST
BOOLEAN
SEARCH
& VECTOR
SPACE MODEL



Motivation of Two-Stage Scoring with 
``Learning-to-Rank” methods

• Machine learning approach:
– Enables more features (signal sources)
– 1st stage aims for high Recall, 2nd stage aims for high Precision

• Useful features based on Query (q) and Document (d)
– Various vector space model results, applied to text, URL, title
– Click-through: e.g. How many times d is clicked given q vs. How 

many times d is skipped
– Results after Query-expansion 

• Useful features based on Document only (static)
– Popularity of page: #Likes, #inlinks, Pagerank
– Domain structure: main page or subpage



Example features

URL match?
Word match?

Recently updated?
Popular page?

User intention 
match?

Not spam?

Clickthrough log?



Problem Formulation

1. Feature extraction
<query, doc1> à vector x1
<query, doc2> à vector x2
<query, doc3> à vector x3

2. Apply ranking function & sort
F(x1) = 3
F(x2) = 1
F(x3) = 4

What function class for F()?
Assume linear weights: F(xi) = wTxi
Learn weights w that replicate ranking on training set

à Rank 2
à Rank 3 (worst)
à Rank 1 (best)



Training Set
Query 1
<query, doc1> à vector x1
<query, doc2> à vector x2
<query, doc3> à vector x3

Labels for each query-doc pair
label(x1) = 3
label(x2) = 1
label(x3) = 4

Query 2
<query, doc1> à vector x1
<query, doc2> à vector x2
<query, doc3> à vector x3
<query, doc4> à vector x4

Labels for each query-doc pair
label(x1) = 3
label(x2) = 2
label(x3) = 1
label(x4) = 0

(Very relevant)
(Relevant)
(Slightly relevant)
(Irrelevant)



Where does the label come from?

• Human annotation
– High quality, but expensive

• Click-through logs
– Noisy, but cheap/abundant



Notation

document for query n: d(n)i i = 1, . . . , In

query: q(n) n = 1, . . . , N

label for each query-doc pair: l(n)i 2 Z

vector of D features per query-doc: x(n)
i 2 RD

Ranking Function: F (x(n)
i ) = wTx(n)

i

Training set: {q(n), {x(n)
i , l(n)i }}



Different training approaches

• How to optimize something on a set with a 
sort operation? Reduce to traditional 
regression/classification problems

Training Approach Reduction
Point-wise Document
Pair-wise Two Documents
List-wise All Documents per query



Point-wise Approach

Ranking Function: F (x(n)
i ) = wTx(n)

i

Training set: {q(n), {x(n)
i , l(n)i }}

Training Objective:

X

n

X

i

(F (x(n)
i )� l(n)i )

2

Find w that makes each F(x) equal to its label



Training Objective:

X

n

X

i

(F (x(n)
i )� l(n)i )

2

Solve with linear regression!

!
X

z

(F (xz)� lz)
2 where z ranges over all i, n



Pair-wise Approach

Ranking Function: F (x(n)
i ) = wTx(n)

i

Training set: {q(n), {x(n)
i , l(n)i }}

Find w that gives every pair the correct ranking
Training Objective:

F (x(n)
i ) > F (x(n)

j ) 8 i, j s.t. l(n)i > l(n)j



Solve with binary classification!
Make a new sample out of every pair  
Give new label: Positive for i,j pairs
                            Negative for j,i pairs

Training Objective:

F (x(n)
i ) > F (x(n)

j ) 8 i, j s.t. l(n)i > l(n)j

! F (x(n)
i )� F (x(n)

j ) > 0 8 i, j s.t. l(n)i > l(n)j

! wTx(n)
i � wTx(n)

j > 0 8 i, j s.t. l(n)i > l(n)j

! wT (x(n)
i � x(n)

j ) > 0 8 i, j s.t. l(n)i > l(n)j

! wT (�(n)ij ) > 0 8 i, j s.t. l(n)i > l(n)j



Disclaimer
• We’ve focused on very simple ranking functions (linear) 

for simplicity
• In practice, more complex functions (e.g. decision 

trees, neural nets) are common
• Some functions use “dense” word embeddings as 

opposed to “sparse” features described previously
• Recommend further reading:
– Dawei Yin, et. al. “Ranking Relevance in Yahoo Search”, 

Proceedings of KDD2016
– Omar Khattab & Matei Zaharia. “ColBERT: Efficient and 

Effective Passage Search via Contextualized Late 
Interaction over BERT”, SIGIR 2020



Embeddings & Neural Nets for Scoring

From: Khattab (SIGIR2020) https://arxiv.org/pdf/2004.12832.pdf 

https://arxiv.org/pdf/2004.12832.pdf
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Evaluation: How good/bad is my IR?

• Evaluation is important:
– Compare two IR systems
– Decide whether our IR is ready for deployment
– Identify research challenges

• Two Ingredients for a trustworthy evaluation:
– Answer Key 
– A Meaningful Metric: given query q, returned 

ranked list, and answer key, computes a number



Precision and Recall

precision = 
A

A + B

A B
C D

relevant
not

relevant

retrieved

not
retrieved

recall = 
A

A + C
average precision = area under curve 

0% 100%

100 %

0%

precision

recall

“Type two errors” 
“Errors of omission” 
“False negatives”

“Type one errors” “Errors 
of commission” “False 
positives”

From Paul McNamee’s JSALT 2018 tutorial slides



Issues with Precision and Recall

• We often don’t know true recall value
– For large collection, impossible to have annotator 

read all documents to assess relevance of a query

• Focused on evaluating sets, rather than 
ranked lists

We’ll introduce Mean Average Precision (MAP) here. Note that 
IR evaluation is a deep field, worth another lecture by itself!
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10 relevant: Rq={d3,d5,d9,d25,d39,d44,d56,d71,d89,d123}
Ranked List: d123, d84 , d56, d6, d8, d9, d511, d129, d187, d25, d38m, d48, d250,  d113, d3

1/1

2/3

3/6

4/10

5/15

From Paul McNamee’s JSALT 2018 tutorial slides

Example for 1 query: precision & recall at 
different positions in ranked list

Average Precision (AP):
(1/1 + 2/3 + 3/6 + 4/10 + 5/15) / 5 = 0.58

Mean Average Precision (MAP):
Mean of AP over multiple queries

• First ranked doc d123 is relevant, which 
is 10% of the total relevant. Therefore 
Precision at the 1/10=10% Recall level 
is 1/1=100%

• Next Relevant d56 gives us 2/3=66% 
Precision at 2/10=20% recall level
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