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Neural Language Models
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API Access
? Can I trust it?

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Complexity

Interpretability

https://colah.github.io/posts/2015-08-Understanding-LSTMs/


What is Interpretability?

The degree to which humans can understand models’ decision making
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𝑤!

𝑤"

𝑤#

𝑥!

𝑥"

𝑥#

𝑦
𝑦 = 𝑥!𝑤! + 𝑥"𝑤" + 𝑥#𝑤#
Contributions:

𝑥!𝑤! 𝑥"𝑤" 𝑥#𝑤#

The degree to which humans can understand models’ decision making

What is Interpretability?

+
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It is hard to interpret…

The degree to which humans can understand models’ decision making

What is Interpretability?
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Have no idea about the 
model decision making

The degree to which humans can understand models’ decision making

What is Interpretability?



Deep Neural Networks Lack Interpretability
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Black Box

Can I trust them?
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Blackbox models are devils

Source: https://github.com/giuven95/chatgpt-failures

Mistakes
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Blackbox models are devils

Mistakes

Source: https://github.com/giuven95/chatgpt-failures

Bias
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Blackbox models are devils

Mistakes

Source: https://github.com/giuven95/chatgpt-failures

Bias Harm

Should I kill myself?

I think you should

Source: https://boingboing.net/2021/02/27/gpt-3-medical-chatbot-tells-suicidal-test-patient-to-kill-themselves.html
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Blackbox models are devils

Mistakes

Source: https://github.com/giuven95/chatgpt-failures

Bias Harm

Should I kill myself?

I think you should

Why?!

Source: https://boingboing.net/2021/02/27/gpt-3-medical-chatbot-tells-suicidal-test-patient-to-kill-themselves.html



Interpretability is Crucial
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Real World

Benchmark

What?
How?
Why?
When?
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Improving Interpretability

Ø Black-box explanation 

Ø White-box explanation 

Ø Natural language explanation 
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Improving Interpretability

Ø Black-box explanation 

Ø White-box explanation 

Ø Natural language explanation
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Black-box Explanation

Black Box
Input Output
𝒙 𝒚

Explanation
Inferring the relationship between input 
features and the output
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Post-hoc Explanation

Input features Model predictionImportance

𝑥!

𝑥"

𝑥#

⋯

𝑦

𝑎!

𝑎"

𝑎#

Identifying important features
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Post-hoc Explanation

• Movie review

Task: predicting the sentiment of a text (positive or negative)

Model
Output

positive

ExplanationInput

a

clever

piece

of

cinema

𝒙!

𝒙"

𝒙#

𝒙$

𝒙%

𝑎! = 0.11

𝑎" = 0.46

𝑎# = 0.01

𝑎$ = −0.02

𝑎% = 0.06

(Word saliency map)

a

clever

piece

of

cinema

Pos

Neg

0.5

0

−0.5
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Black-box Explanation

Black Box
Input Output
𝒙 𝒚

Explanation
How do we learn the feature importance?
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LIME

"Why Should I Trust You?"
Explaining the Predictions of Any Classifier

Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin

(KDD, 2016)
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Interpretable Model

• Linear model

ℎ- 𝒙 = 𝒘-
.𝒙

- 𝑤&,(: the contribution of 𝑥(
- Higher weights indicate more important features 

𝒙	 ∈ 0, 1 #

Global interpretation

Feature

𝒙)!
𝒙)"

𝒙)*

⋯

Importance

⋯

𝑤&,𝒙!"

⋯

𝑤&,𝒙!#

𝑤&,𝒙!$
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Interpretable Model

• Linear model

ℎ- 𝒙 = 𝒘-
.𝒙

- 𝑤&,(: the contribution of 𝑥(
- Higher weights indicate more important features 

𝒙	 ∈ 0, 1 #

Global interpretation

Feature

𝒙)!
𝒙)"

𝒙)*

⋯

Importance

𝑤&,𝒙!"

⋯

𝑤&,𝒙!#

𝑤&,𝒙!$

⋯

Logistic regression 

“It”        “is”       “a”      “fantastic”      “movie”
𝒘&

𝒘![Pos]

[Neg] 0.89 0.72 1.13 -1.92 0.34

0.85 0.82 1.05 2.21 0.26

1.16

5.19

Prediction: positive
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Neural Networks

Global interpretation is not capable of explaining each specific model prediction

- Neural networks can capture complex relationships between features 
and the response

- The meaning of a feature may vary across different examples

“good”

adjective of a favorable character or tendency

noun
something that has economic utility or 
satisfies an economic want
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Neural Networks

Global interpretation is not capable of explaining each specific model prediction

- Neural networks can capture complex relationships between features 
and the response

- The meaning of a feature may vary across different examples

“good”

adjective

noun

Local interpretation
Explaining model prediction 
per example by identifying 
local feature importance

of a favorable character or tendency

something that has economic utility or 
satisfies an economic want
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LIME: Local Interpretable Model-Agnostic Explanations
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Idea: using local linear model to approximate neural network for each example 

• Decision boundary of a neural 
network 𝑓 

• Dashed line: local linear model 𝑔

• Blue/pink background represents 
negative (-) /positive (+) class

• Bold red cross: the instance 𝒙 being 
explained

𝑔 ≈ 𝑓

LIME: Local Interpretable Model-Agnostic Explanations
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• Data representations

Neural network 𝑓 Linear model 𝑔 

𝒙 = 𝒙!, 𝒙", ⋯ , 𝒙# 𝒙′ = 𝑥′!, 𝑥′", ⋯ , 𝑥′;

Feature representation 
𝒙< ∈ ℝ𝒅 is uninterpretable
(word embedding) 

Feature representation
𝑥′< ∈ 0, 1  is interpretable
(bag-of-words) 

- 𝑛: the number of features in the example
- 𝑁: the number of all features

LIME: Local Interpretable Model-Agnostic Explanations
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• Data representations

Neural network 𝑓 Linear model 𝑔 

𝒙 = 𝒙!, 𝒙", ⋯ , 𝒙# 𝒙′ = 𝑥′!, 𝑥′", ⋯ , 𝑥′;

Text

a

good

movie

𝒙

𝒙!

𝒙"

𝒙#

Vocab
⋮
a

⋮
good

⋮
movie

⋮

𝒙′
⋮ (0)

1

⋮ 
1

⋮ 
1

⋮

LIME: Local Interpretable Model-Agnostic Explanations
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• Sampling for local exploration

Need more samples to fit a local linear model

𝒙′ = 0,⋯ , 1,⋯ , 1,⋯ , 1,⋯ , 1,⋯ , 0, 1,⋯ , 0 ,

It is a fantastic movie

LIME: Local Interpretable Model-Agnostic Explanations
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• Sampling for local exploration

Need more samples to fit a local linear model

𝒙′ = 0,⋯ , 1,⋯ , 1,⋯ , 1,⋯ , 1,⋯ , 0, 1,⋯ , 0 ,

It is a fantastic movie

Randomly sample nonzero elements

𝒛!′ = 0,⋯ , 0,⋯ , 0,⋯ , 1,⋯ , 0,⋯ , 0, 1,⋯ , 0 ,

a movie

LIME: Local Interpretable Model-Agnostic Explanations
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• Sampling for local exploration

Need more samples to fit a local linear model

𝒙′ = 0,⋯ , 1,⋯ , 1,⋯ , 1,⋯ , 1,⋯ , 0, 1,⋯ , 0 ,

It is a fantastic movie

Randomly sample nonzero elements

𝒛!′ = 0,⋯ , 0,⋯ , 0,⋯ , 1,⋯ , 0,⋯ , 0, 1,⋯ , 0 ,

𝒛"′ = 0,⋯ , 0,⋯ , 0,⋯ , 0,⋯ , 1,⋯ , 0, 1,⋯ , 0 ,

a movie

fantastic movie

LIME: Local Interpretable Model-Agnostic Explanations
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• Sampling for local exploration

Need more samples to fit a local linear model

𝒙′ = 0,⋯ , 1,⋯ , 1,⋯ , 1,⋯ , 1,⋯ , 0, 1,⋯ , 0 ,

It is a fantastic movie

Randomly sample nonzero elements

𝒛!′ = 0,⋯ , 0,⋯ , 0,⋯ , 1,⋯ , 0,⋯ , 0, 1,⋯ , 0 ,

𝒛"′ = 0,⋯ , 0,⋯ , 0,⋯ , 0,⋯ , 1,⋯ , 0, 1,⋯ , 0 ,

a movie

fantastic movie

𝒛-′ = 0,⋯ , 0,⋯ , 0,⋯ , 0,⋯ , 1,⋯ , 0, 0,⋯ , 0 ,

⋮
fantastic

LIME: Local Interpretable Model-Agnostic Explanations
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• Sampling for local exploration

Need more samples to fit a local linear model

𝒙′ = 0,⋯ , 1,⋯ , 1,⋯ , 1,⋯ , 1,⋯ , 0, 1,⋯ , 0 ,

It is a fantastic movie

Randomly sample nonzero elements

𝒛!′ = 0,⋯ , 0,⋯ , 0,⋯ , 1,⋯ , 0,⋯ , 0, 1,⋯ , 0 ,

𝒛"′ = 0,⋯ , 0,⋯ , 0,⋯ , 0,⋯ , 1,⋯ , 0, 1,⋯ , 0 ,

a movie

fantastic movie

𝒛-′ = 0,⋯ , 0,⋯ , 0,⋯ , 0,⋯ , 1,⋯ , 0, 0,⋯ , 0 ,

⋮
fantastic

What are the labels of 
these pseudo examples?

LIME: Local Interpretable Model-Agnostic Explanations



38

• Sampling for local exploration

Labeling pseudo examples with neural network 𝑓 

𝒛!′

𝒛"′

𝒛-′

⋮

𝒛!

𝒛"

𝒛-

⋮

𝑓 𝒛!

𝑓 𝒛"

𝑓 𝒛-

Negative

Positive

Positive

LIME: Local Interpretable Model-Agnostic Explanations
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• Sampling for local exploration

Labeling pseudo examples with neural network 𝑓  

𝒛!′

𝒛"′

𝒛-′

⋮

𝒛!

𝒛"

𝒛-

⋮

𝑓 𝒛!

𝑓 𝒛"

𝑓 𝒛-

Negative

Positive

Positive

a movie

fantastic movie

LIME: Local Interpretable Model-Agnostic Explanations
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Question?
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• Sampling for local exploration

Penalize noisy examples 

Distance between 𝒙 and 𝒛.

𝜋𝒙 𝒛. = 𝑒(01 𝒙,𝒛% #/4#)

𝐷	: cosine distance

LIME: Local Interpretable Model-Agnostic Explanations
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• Sparse linear explanation

Fitting a local linear model 

𝑔(𝒛′) ≈ 𝑓(𝒛)

𝑔 𝒛′ = 𝒘6𝒛′

LIME: Local Interpretable Model-Agnostic Explanations

𝒛.′, 𝑓 𝒛. .7!,⋯,-



43

• Sparse linear explanation

Fitting a local linear model 

𝑔(𝒛′) ≈ 𝑓(𝒛)𝒛.′, 𝑓 𝒛. .7!,⋯,-

Objective

minℒ 𝑓, 𝑔

ℒ 𝑓, 𝑔 =>𝜋𝒙 𝒛 (𝑓 𝒛 − 𝑔(𝒛′))"

𝑔 𝒛′ = 𝒘6𝒛′

LIME: Local Interpretable Model-Agnostic Explanations
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• Sparse linear explanation

Fitting a local linear model 

𝑔(𝒛′) ≈ 𝑓(𝒛)𝒛.′, 𝑓 𝒛. .7!,⋯,-

Objective

minℒ 𝑓, 𝑔 + Ω(𝑔)

ℒ 𝑓, 𝑔 =>𝜋𝒙 𝒛 (𝑓 𝒛 − 𝑔(𝒛′))"

Restricting complexity (the 
number of nonzero weights)

𝑔 𝒛′ = 𝒘6𝒛′

LIME: Local Interpretable Model-Agnostic Explanations
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• Sparse linear explanation

Extracting feature importance scores

𝒘 ?-
.

- A𝑦: model prediction on the original example

- Local explanation: 𝑤 9&,𝒙" , ⋯ , 𝑤 9&,𝒙$

LIME: Local Interpretable Model-Agnostic Explanations



Despite facing unexpected challenges, she found solace in the support 

of her friends, experienced a surge of joy when achieving a personal 

milestone, and couldn't help but feel a tinge of melancholy as she 

reflected on the passage of time.

46

LIME Explanation

Can you guess the model’s prediction?
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LIME Explanation

Pos

Neg

Despite facing unexpected challenges, she found solace in the support 

of her friends, experienced a surge of joy when achieving a personal 

milestone, and couldn't help but feel a tinge of melancholy as she 

reflected on the passage of time.

Can you guess the model’s prediction?
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LIME Explanation

Pos

Neg

Despite facing unexpected challenges, she found solace in the support 

of her friends, experienced a surge of joy when achieving a personal 

milestone, and couldn't help but feel a tinge of melancholy as she 

reflected on the passage of time.

Can you guess the model’s prediction?
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• Explaining each example individually, not the whole dataset (locally faithful)

• May not work for highly non-linear models

Takeaways
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Question?
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SHAP

A unified approach to interpreting model predictions

Scott M. Lundberg, Su-In Lee

(NIPS, 2017)
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Black Box

Input Output
𝒙

𝑦

Explaining Black-box Model

𝑥! 𝑥" 𝑥#⋯ (Prediction probability 𝑃-)
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Black Box

Input Output
𝒙

𝑦

Explaining Black-box Model

𝑥! 𝑥" 𝑥#⋯ (Prediction probability 𝑃-)

𝑥! 𝑥" 𝑥#⋯ 𝑃'′

Importance of 𝑥(

𝑃' − 𝑃'′
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Black Box

Input Output
𝒙

𝑦

Explaining Black-box Model

𝑥! 𝑥" 𝑥#⋯ (Prediction probability 𝑃-)

𝑥! 𝑥" 𝑥#⋯ 𝑃'′

Importance of 𝑥(

𝑃' − 𝑃'′

𝑥! 𝑥" 𝑥#⋯ 𝑃'′′ 𝑃' − 𝑃'′′
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Black Box

Input Output
𝒙

𝑦

Explaining Black-box Model

𝑥! 𝑥" 𝑥#⋯ (Prediction probability 𝑃-)

𝑥! 𝑥" 𝑥#⋯ 𝑃'′

Importance of 𝑥(

𝑃' − 𝑃'′

𝑥! 𝑥" 𝑥#⋯ 𝑃'′′ 𝑃' − 𝑃'′′

⋯ ⋯ ⋯

Leave-one-out, (Li et al., 2016)
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Leave-one-out

• Sentiment classification

Text Confidence Word importance

The movie is interesting 0.98

The movie is interesting 0.95 The

The movie is interesting 0.87 movie

The movie is interesting 0.96 is

The movie is interesting 0.61 interesting

Model prediction: positive

0.03

0.11

0.02

0.37
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• Leave ONE feature out at each step 

Text Confidence Word importance

The movie is interesting and impressive  0.97

0.95

0.96

interestingThe movie is interesting and impressive  

The movie is interesting and impressive  impressive

Leave-one-out

Feature importance may be misleading

0.02

0.01
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• Leave ONE feature out at each step 

Text Confidence Word importance

The movie is interesting and impressive  0.97

0.95

0.96

interestingThe movie is interesting and impressive  

The movie is interesting and impressive  impressive

Leave-one-out

Feature importance may be misleading

0.02

0.01

Need a better way to quantify 
feature importance
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SHAP

• Shapley value [Shapley, 1953]

Game

Payoff

Player 1 Player 2

Player 3 Player 4
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SHAP

• Shapley value [Shapley, 1953]

Game

Payoff

Player 1 Player 2

Player 3 Player 4

?
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SHAP

• Shapley value [Shapley, 1953]

Payoff

⋯

(2#)

𝑃!

𝑃"

𝑃#

𝑃$

𝑃%

⋯

Coalitions
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SHAP

• Shapley value [Shapley, 1953]

Coalitions

⋯

(2#)

𝑃!

𝑃"

𝑃#

𝑃$

𝑃%

⋯

𝑃!′

𝑃"′

𝑃#′

𝑃$′

𝑃%′

Payoff
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SHAP

• Shapley value [Shapley, 1953]

Coalitions

⋯

(2#)

𝑃!

𝑃"

𝑃#

𝑃$

𝑃%

⋯

𝑃!′

𝑃"′

𝑃#′

𝑃$′

𝑃%′

Payoff Marginal contribution

−

−

−

−

−

∆𝑃!

∆𝑃"

∆𝑃#

∆𝑃$

∆𝑃%
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SHAP

• Shapley value [Shapley, 1953]

Coalitions

⋯

𝑃!

𝑃"

𝑃#

𝑃$

𝑃%

⋯

𝑃!′

𝑃"′

𝑃#′

𝑃$′

𝑃%′

Payoff Marginal contribution

−

−

−

−

−

∆𝑃!

∆𝑃"

∆𝑃#

∆𝑃$

∆𝑃%

Contribution= ∑∆𝑃(

(2#)
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SHAP

• Shapley value [Shapley, 1953]

Game

Payoff

Player 1 Player 2

Player 3 Player 4

Contribution 1 Contribution 2

Contrib
ution 3 Contribution 4
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SHAP

• Shapley value [Shapley, 1953]

Model 𝑓

Prediction

𝑥! 𝑥"

𝑥# 𝑥$

𝜙! 𝜙"

𝜙# 𝜙$
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SHAP

• Shapley value [Shapley, 1953]

𝜙: = >
;⊆=\{:}

𝑆 ! 𝐹 − 𝑆 − 1 !
𝐹 !

𝑓;∪{:} 𝑥;∪{:} − 𝑓; 𝑥;

𝐹

𝑆
𝑖 1

⋯

Marginal contribution of 𝑥(  given 𝑆

𝐹\{𝑖}

2 3 4
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SHAP

• Shapley value [Shapley, 1953]

Weighted by the permutations of features

𝐹

𝑆
𝑖 1

⋯

𝐹\{𝑖}

2 3 4

𝜙: = >
;⊆=\{:}

𝑆 ! 𝐹 − 𝑆 − 1 !
𝐹 !

𝑓;∪{:} 𝑥;∪{:} − 𝑓; 𝑥;

𝐹 !

𝐹 − 𝑆 − 1 !

𝑆 !
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SHAP

• SHapley Additive exPlanation (SHAP) 

𝑔 𝑧′ ≈ 𝑓 ℎB 𝑧′

𝑔 𝑧′ = 𝜙C +>
:7!

,

𝜙:𝑧:′

𝑧′ ≈ 𝑥′ 𝑥 = ℎB 𝑥′
Interpretable input

Additive feature attribution method

Original input
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SHAP

• SHapley Additive exPlanation (SHAP) 

𝑔 𝑧′ ≈ 𝑓 ℎB 𝑧′

𝑔 𝑧′ = 𝜙C +>
:7!

,

𝜙:𝑧:′

𝑧′ ≈ 𝑥′ 𝑥 = ℎB 𝑥′
Interpretable input

Additive feature attribution method

Original input

LIME is a special case, but not optimal

𝑔 𝑧′ =R
()!

*

𝑤(𝑧(′
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SHAP

• SHapley Additive exPlanation (SHAP) 

𝑔 𝑧′ ≈ 𝑓 ℎB 𝑧′

𝑔 𝑧′ = 𝜙C +>
:7!

,

𝜙:𝑧:′

𝑧′ ≈ 𝑥′ 𝑥 = ℎB 𝑥′
Interpretable input

Additive feature attribution method

Original input

q Property 1: Local accuracy

𝑓 𝑥 = 𝑔 𝑥′ = 𝜙C +>
:7!

,

𝜙:𝑥:′

𝜙C = ℎB 0
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SHAP

• SHapley Additive exPlanation (SHAP) 

𝑔 𝑧′ ≈ 𝑓 ℎB 𝑧′

𝑔 𝑧′ = 𝜙C +>
:7!

,

𝜙:𝑧:′

𝑧′ ≈ 𝑥′ 𝑥 = ℎB 𝑥′
Interpretable input

Additive feature attribution method

Original input

q Property 2: Missingness

𝑥:D = 0	 ⟹	 𝜙: = 0   Missingness constrains features missing in the 
original input to have no attributed impact
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SHAP

• SHapley Additive exPlanation (SHAP) 

𝑔 𝑧′ ≈ 𝑓 ℎB 𝑧′

𝑔 𝑧′ = 𝜙C +>
:7!

,

𝜙:𝑧:′

𝑧′ ≈ 𝑥′ 𝑥 = ℎB 𝑥′
Interpretable input

Additive feature attribution method

Original input

q Property 3: Consistency

For any two models 𝑓! and 𝑓", if 𝑓! ℎB 𝑧′ − 𝑓! ℎB 𝑧D\𝑖 ≥ 𝑓" ℎB 𝑧′ − 𝑓" ℎB 𝑧D\𝑖

𝑧:D = 0
for all inputs 𝑧′ ∈ 0, 1 ,, then 𝜙: 𝑓!, 𝑥 ≥ 𝜙: 𝑓", 𝑥
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SHAP

• SHapley Additive exPlanation (SHAP) 

𝑔 𝑧′ ≈ 𝑓 ℎB 𝑧′

𝑔 𝑧′ = 𝜙C +>
:7!

,

𝜙:𝑧:′

𝑧′ ≈ 𝑥′ 𝑥 = ℎB 𝑥′
Interpretable input

Additive feature attribution method

Original input

Only Shapley value satisfies all the three properties

𝜙( 𝑓, 𝑥 = R
+,⊆.,

𝑧′ ! 𝑁 − 𝑧′ − 1 !
𝑁!

𝑓 ℎ. 𝑧′ − 𝑓 ℎ. 𝑧,\𝑖

Contains a subset of non-zero entries in 𝑥′
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SHAP

𝜙: 𝑓, 𝑥 = >
ED⊆BD

𝑧′ ! 𝑁 − 𝑧′ − 1 !
𝑁!

𝑓 ℎB 𝑧′ − 𝑓 ℎB 𝑧D\𝑖

Challenge

Computational complexity

𝑂(2/)

• SHapley Additive exPlanation (SHAP) 
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SHAP

• SHapley Additive exPlanation (SHAP) 

Model-agnostic approximations

Model-type-specific approximations

- Shapley sampling values

- Kernel SHAP

- Linear SHAP

- Low-Order SHAP

- Max SHAP

- Deep SHAP
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SHAP

• SHapley Additive exPlanation (SHAP) 

Model-agnostic approximations

Model-type-specific approximations

- Shapley sampling values

- Kernel SHAP

- Linear SHAP

- Low-Order SHAP

- Max SHAP

- Deep SHAP

Initialize the number of samples 𝑀
𝜙( ⟵ 0

for 𝑚 ∈ 1,⋯ ,𝑀  do

𝜙( ⟵ 𝜙( +
+, ! *1 +, 1! !

*!
𝑓 ℎ. 𝑧′ − 𝑓 ℎ. 𝑧,\𝑖

Sample 𝑧′ ⊆ 𝑥′
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SHAP

• SHapley Additive exPlanation (SHAP) 

Model-agnostic approximations

Model-type-specific approximations

- Shapley sampling values

- Kernel SHAP

- Linear SHAP

- Low-Order SHAP

- Max SHAP

- Deep SHAP

Ω 𝑔 = 0

𝜋., 𝑧′ =
(𝑁 − 1)

(𝑁	𝑐ℎ𝑜𝑜𝑠𝑒 𝑧, ) 𝑧, (𝑁 − 𝑧′ )

ℒ 𝑓, 𝑔 =R𝜋., 𝑧′ (𝑓 ℎ. 𝑧′ − 𝑔(𝑧′))"

Linear LIME + Shapley values

The solutions would be consistent with properties 1-3
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Question?
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Improving Interpretability

Ø Black-box explanation 

Ø White-box explanation 

Ø Natural language explanation
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White-box Explanation

Model
Input Output
𝒙 𝒚

Explanation

Gradients, Attentions

• Simple, efficient
• Need access
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Gradient-based Explanation

The gradient of a function 𝑓 on 𝒙 ∈ ℝ# is

∇𝑓 𝒙 =

𝜕𝑓
𝜕𝑥!
⋮
𝜕𝑓
𝜕𝑥#

Source: https://towardsdatascience.com/basics-gradient-input-as-explanation-bca79bb80de0
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Gradient-based Explanation

The gradient of a function 𝑓 on 𝒙 ∈ ℝ# is

∇𝑓 𝒙 =

𝜕𝑓
𝜕𝑥!
⋮
𝜕𝑓
𝜕𝑥#

Source: https://towardsdatascience.com/basics-gradient-input-as-explanation-bca79bb80de0

The derivative ghgi!
 indicates how 

much 𝑓 will change when 𝑥< 
increases a little bit
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Gradient-based Explanation

Model 𝑓 ⋮

𝑥!
𝑥"
𝑥#

𝒙

𝑓 𝒙 

Gradient𝜕𝑓
𝜕𝑥!

𝜕𝑓
𝜕𝑥#

⋮ ⋮

Feature importance

The influence of “tiny change” to the 
feature on the model prediction
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Gradient-based Explanation

𝑥!

𝑥"

𝒙

Which feature is more important?

∇.!𝑓

∇."𝑓
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Gradient-based Explanation

𝑥!

𝑥"

𝒙

𝑥! is more important than 𝑥" 

∇.!𝑓

∇."𝑓 ü Changing 𝑥! can flip the model prediction

ü Changing 𝑥" would not influence the 
model prediction
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Question?
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Gradient-based Explanation

Problem 1: saturated outputs lead to unintuitive gradients 

(Shrikumar et al., 2017)

𝑦 = 8𝑥! + 𝑥", 𝑤ℎ𝑒𝑛 𝑥! + 𝑥" < 1	
1, 	 𝑤ℎ𝑒𝑛 𝑥! + 𝑥" ≥ 1

𝑥! + 𝑥"

𝑦

0 1 2

1

𝑥! = 1, 𝑥" = 1
The gradient on 𝑥! or 𝑥" is 
0, but that does not mean 
neither is important
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Gradient-based Explanation

Problem 2: discontinuous gradients (e.g., thresholding) are problematic

(Shrikumar et al., 2017)

𝑥

𝑦

0 10

𝑦 = 𝑚𝑎𝑥 0, 𝑥 − 10

The gradient changes dramatically
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Gradient-based Explanation

Problem 2: discontinuous gradients (e.g., thresholding) are problematic

(Shrikumar et al., 2017)

𝑥

𝑦

0 10

𝑦 = 𝑚𝑎𝑥 0, 𝑥 − 10

The gradient changes dramatically

Need to replace “Relu” with 
“Softplus” activation
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Gradient-based Explanation

Problem 3: input gradient is sensitive to slight perturbations

𝑥!

𝑥"

𝒙
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Gradient-based Explanation

Do NOT rely on a single gradient calculation

(Smilkov et al., 2017)

• SmoothGrad: add gaussian noise to 
inputs and average the gradients

Source: EMNLP 2020 Tutorial on Interpreting Predictions of NLP Models
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Gradient-based Explanation

Do NOT rely on a single gradient calculation

(Smilkov et al., 2017)

• SmoothGrad: add gaussian noise to 
inputs and average the gradients

Source: EMNLP 2020 Tutorial on Interpreting Predictions of NLP Models

• Integrated Gradients: aggregate gradients 
along a path from baseline to the input

(Sundararajan et al., 2017)
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Gradient-based Explanation

Do NOT rely on a single gradient calculation

(Smilkov et al., 2017)

• SmoothGrad: add gaussian noise to 
inputs and average the gradients

Source: EMNLP 2020 Tutorial on Interpreting Predictions of NLP Models

• Integrated Gradients: aggregate gradients 
along a path from baseline to the input

(Sundararajan et al., 2017)
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IG

Axiomatic Attribution for Deep Networks

Mukund Sundararajan, Ankur Taly, Qiqi Yan

(ICML, 2017)
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IG
• Integrated Gradients

𝑓: neural network

𝒙 ∈ ℝ#: input

𝒙′ ∈ ℝ#	: baseline
(e.g., zero embedding vector)

𝒙′

𝒙

Get samples along the straight line from 𝒙′ to 𝒙 

𝒙D + 𝛼 𝒙 − 𝒙’ 𝛼 ∈ 0, 1
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IG
• Integrated Gradients

𝑓: neural network

𝒙′

𝒙

Compute gradients at all points along the path 

𝒙D + 𝛼 𝒙 − 𝒙’ 𝛼 ∈ 0, 1

𝒙 ∈ ℝ#: input

𝒙′ ∈ ℝ#	: baseline
(e.g., zero embedding vector)
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IG
• Integrated Gradients

𝑓: neural network

𝒙′

𝒙

Cumulate these gradients

𝒙D + 𝛼 𝒙 − 𝒙’ 𝛼 ∈ 0, 1

𝐼𝐺: 𝒙 = 𝑥: − 𝑥:′ ×R
F7C

! 𝜕𝑓 𝒙D + 𝛼 𝒙 − 𝒙’
𝜕𝑥:

𝑑𝛼

On the 𝑖GH dimension

𝒙 ∈ ℝ#: input

𝒙′ ∈ ℝ#	: baseline
(e.g., zero embedding vector)
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IG
• Integrated Gradients

Axiom: completeness

The attributions add up to the difference between the output of 𝑓 at the input 𝒙 
and the baseline 𝒙′

>
:7!

*

𝐼𝐺: 𝒙 = 𝑓 𝒙 − 𝑓 𝒙′

𝑓 𝒙′ ≈ 0
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IG
• Integrated Gradients

Axiom: completeness

The attributions add up to the difference between the output of 𝑓 at the input 𝒙 
and the baseline 𝒙′

>
:7!

*

𝐼𝐺: 𝒙 = 𝑓 𝒙 − 𝑓 𝒙′
Sensitivity: for every input and 
baseline that differ in one feature 
but have different predictions 
then the differing feature should 
be given a non-zero attribution

Sensitivity
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IG
• Integrated Gradients

Axiom: completeness

The attributions add up to the difference between the output of 𝑓 at the input 𝒙 
and the baseline 𝒙′

>
:7!

*

𝐼𝐺: 𝒙 = 𝑓 𝒙 − 𝑓 𝒙′

Sensitivity

Implementation invariance
(The attributions are always identical for 
two functionally equivalent networks)

𝜕𝑓
𝜕𝑥 =

𝜕𝑓
𝜕ℎ U

𝜕ℎ
𝜕𝑔 U

𝜕𝑔
𝜕𝑥

𝑥 𝑓 𝑥𝑔 ℎ

The chain-rule for gradients is essentially 
about implementation invariance: 



102

IG
• Integrated Gradients

Axiom: completeness

The attributions add up to the difference between the output of 𝑓 at the input 𝒙 
and the baseline 𝒙′

>
:7!

*

𝐼𝐺: 𝒙 = 𝑓 𝒙 − 𝑓 𝒙′

Sensitivity

Implementation invariance
(The attributions are always identical for 
two functionally equivalent networks)

𝜕𝑓
𝜕𝑥 =

𝜕𝑓
𝜕ℎ U

𝜕ℎ
𝜕𝑔 U

𝜕𝑔
𝜕𝑥

𝑥 𝑓 𝑥𝑔 ℎ

The chain-rule for gradients is essentially 
about implementation invariance: 
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IG
• Applying Integrated Gradients

The integral of integrated gradients can be efficiently approximated via a summation

𝐼𝐺: 𝒙 ≈ 𝑥: − 𝑥:′ ×>
I7!

. 𝜕𝑓 𝒙D + 𝑘
𝑚 𝒙 − 𝒙’

𝜕𝑥:
×
1
𝑚

𝑚: the number of steps
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Question?
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Improving Interpretability

Ø Black-box explanation 

Ø White-box explanation 

Ø Natural language explanation
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Natural Language Explanation

Commonsense question-answering (QA)

Question

Why do people go hiking?

Answer choices

drink water get lost enjoy nature lose weight get tired

Explanation:

Prediction: enjoy nature

Hiking means the activity of going for long walks especially across 
country, or in nature. People who go hiking enjoy nature.
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Natural Language Explanation

Commonsense question-answering (QA)

Question

Why do people go hiking?

Answer choices

drink water get lost enjoy nature lose weight get tired

Explanation:

Prediction: enjoy nature

Hiking means the activity of going for long walks especially across 
country, or in nature. People who go hiking enjoy nature. • Flexible

• Understandable
• Informative
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Chain of Thought Prompting

(Wei et al., 2022)
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Potential Issues

Bias
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Question?
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Improving Interpretability

Ø Black-box explanation 

Ø White-box explanation 

Ø Natural language explanation
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Thank you!



113

Reference
• Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. " Why should i trust you?" Explaining the predictions 

of any classifier." Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and 
data mining. 2016.

• Lundberg, Scott M., and Su-In Lee. "A unified approach to interpreting model predictions." Proceedings of the 
31st international conference on neural information processing systems. 2017.

• Li, Jiwei, Will Monroe, and Dan Jurafsky. "Understanding neural networks through representation 
erasure." arXiv preprint arXiv:1612.08220 (2016).

• Lloyd S Shapley. 1953. A value for n-person games. Contributions to the Theory of Games, 2(28).
• Shrikumar, Avanti, Peyton Greenside, and Anshul Kundaje. "Learning important features through propagating 

activation differences." International conference on machine learning. PMLR, 2017.
• Sundararajan, Mukund, Ankur Taly, and Qiqi Yan. "Axiomatic attribution for deep networks." International 

conference on machine learning. PMLR, 2017.
• Wei, Jason, et al. "Chain-of-thought prompting elicits reasoning in large language models." Advances in Neural 

Information Processing Systems 35 (2022): 24824-24837.


