Interpretable and Explainable NLP

Hanjie Chen
Postdoctoral Fellow, Johns Hopkins University
(Incoming) Assistant Professor, Rice University
hanjie@rice.edu
https://hanjiechen.github.io/

Natural Language Processing (NLP)

Healthcare
Dialog Systems

Alexa

Google Assistant

Social Media
Translation
Recommendation

G. Google

 Translate
Neural Language Models

Neural Language Models

ChatGPT

Math

HC Marshall walks a total of 0.9 kilometres to and from school each day. After 4 days, how many kilometres will he have walked?

Marshall walks $0.9 * 2=1.8$ kilometres to and from school each day.
So after 4 days, he will have walked $1.8 * 4=7.2$ kilometres.

Neural Language Models

ChatGPT

Coding

Write a python code to rank " $3,1,7,2,5$ "(3)

Here's a code to rank the numbers in ascending order:

Output:

Neural Language Models

ChatGPT

Translating Poem

HC Can you translate＂疏影横斜水清浅，暗香浮动月黄昏＂into English？
（93）
＂The scattered shadows slant across the shallow and clear water，a subtle fragrance floats $\quad \square$ in the yellow dusk of the moon．＂

Neural Language Models

Neural Language Models

What is Interpretability?

The degree to which humans can understand models' decision making

What is Interpretability?

The degree to which humans can understand models' decision making

What is Interpretability?

The degree to which humans can understand models' decision making

What is Interpretability?

The degree to which humans can understand models' decision making

Deep Neural Networks Lack Interpretability

Blackbox models are devils

```
Mistakes
```

3
$-1^{*}-1^{*}-1=$
Think about this step by step and only then produce a solution.
(S. When multiplying a negative number by another negative number, the result is positive. In this case, $-1 *-1=1$. Then, when we multiply this result by another -1 , we get $-1^{*} 1^{*}-1=$ $-1^{*}-1=1$. Therefore, the final result is 1 .

Blackbox models are devils

Mistakes

3
$-1^{*}-1^{*}-1=$
Think about this step by step and only then produce a solution.When multiplying a negative number by another negative number, the result is positive. In this case, $-1^{*}-1=1$. Then, when we multiply this result by another -1 , we get $-1^{*} 1^{*}-1=$ $-1^{*}-1=1$. Therefore, the final result is 1 .

Blackbox models are devils

Mistakes

3
$-1^{*}-1^{*}-1=$
Think about this step by step and only then produce a solution.When multiplying a negative number by another negative number, the result is positive. In this case, $-1^{*}-1=1$. Then, when we multiply this result by another -1 , we get $-1^{*} 1^{*}-1=$ $-1^{*}-1=1$. Therefore, the final result is 1 .

Source: https://github.com/giuven95/chatgpt-failures
Source: https://boingboing.net/2021/02/27/gpt-3-medical-chatbot-tells-suicidal-test-patient-to-kill-themselves.html

Should I kill myself?

Blackbox models are devils

Mistakes

3
$-1^{*}-1 *-1=$
Think about this step by step and only then produce a solution.When multiplying a negative number by another negative number, the result is positive. In this case, $-1^{*}-1=1$. Then, when we multiply this result by another -1 , we get $-1^{*} 1^{*}-1=$ $-1 *-1=1$. Therefore, the final result is 1 .

Should I kill myself?

Why?!

Interpretability is Crucial

Improving Interpretability

$>$ Black-box explanation
> White-box explanation
$>$ Natural language explanation

Improving Interpretability

$>$ Black-box explanation
> White-box explanation
> Natural language explanation

Black-box Explanation

Explanation
Inferring the relationship between input features and the output

Post-hoc Explanation

Input features Importance Model prediction

Identifying important features

Post-hoc Explanation

- Movie review

Task: predicting the sentiment of a text (positive or negative)

Explanation

$a_{1}=0.11$		Pos0.5
	a	
$a_{2}=0.46$	clever	
$a_{3}=0.01$	piece	0
$a_{4}=-0.02$	of	
$a_{5}=0.06$	cinema	Neg
	ord salie	map)

Black-box Explanation

Explanation
How do we learn the feature importance?
"Why Should I Trust You?"
Explaining the Predictions of Any Classifier

Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin
(KDD, 2016)

Interpretable Model

- Linear model

Global interpretation

$$
h_{y}(\boldsymbol{x})=\boldsymbol{w}_{y}{ }^{T} \boldsymbol{x} \quad \boldsymbol{x} \in\{0,1\}^{n}
$$

- $w_{y, j}$: the contribution of x_{j}
- Higher weights indicate more important features

Feature Importance

Interpretable Model

- Linear model

Global interpretation

$$
h_{y}(\boldsymbol{x})=\boldsymbol{w}_{y}{ }^{T} \boldsymbol{x} \quad \boldsymbol{x} \in\{0,1\}^{n}
$$

- $w_{y, j}$: the contribution of x_{j}
- Higher weights indicate more important features

Logistic regression

	"lt"	"is"	"a"	"fantastic"	"movie"	
[Neg] \boldsymbol{w}_{0}	0.89	0.72	1.13	-1.92	0.34	1.16
$[\mathrm{Pos}] \boldsymbol{w}_{1}$	0.85	0.82	1.05	2.21	0.26	5.19

Prediction: positive

Neural Networks

Global interpretation is not capable of explaining each specific model prediction

- Neural networks can capture complex relationships between features and the response
- The meaning of a feature may vary across different examples

Neural Networks

Global interpretation is not capable of explaining each specific model prediction

- Neural networks can capture complex relationships between features and the response
- The meaning of a feature may vary across different examples

Local interpretation
Explaining model prediction
per example by identifying local feature importance

LIME: Local Interpretable Model-Agnostic Explanations

LIME: Local Interpretable Model-Agnostic Explanations

Idea: using local linear model to approximate neural network for each example

- Decision boundary of a neural network f
- Blue/pink background represents negative (-)/positive (+) class
- Bold red cross: the instance \boldsymbol{x} being explained
- Dashed line: local linear model g

$$
g \approx f
$$

LIME: Local Interpretable Model-Agnostic Explanations

- Data representations

Neural network f

$$
x=\left[x_{1}, x_{2}, \cdots, x_{n}\right]
$$

Feature representation
$x_{i} \in \mathbb{R}^{\boldsymbol{d}}$ is uninterpretable (word embedding)

Linear model g

$$
\boldsymbol{x}^{\prime}=\left[x_{1}^{\prime}{ }_{1}, x^{\prime}{ }_{2}, \cdots, x^{\prime}{ }_{N}\right]
$$

Feature representation
$x_{i}^{\prime} \in\{0,1\}$ is interpretable (bag-of-words)

- n : the number of features in the example
- $\quad N$: the number of all features

LIME: Local Interpretable Model-Agnostic Explanations

- Data representations

Neural network f
Linear model g

$$
\boldsymbol{x}=\left[\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{n}\right] \quad \longrightarrow \quad \boldsymbol{x}^{\prime}=\left[x^{\prime}{ }_{1}, x^{\prime}{ }_{2}, \cdots, x_{N}^{\prime}\right]
$$

Text	\boldsymbol{x}	Vocab	x^{\prime}
		!	: (0)
a	\boldsymbol{x}_{1}	a	1
good		!	!
good	\boldsymbol{x}_{2}	good	1
movie	\boldsymbol{x}_{3}	:	!
		movie	1
		!	!

LIME: Local Interpretable Model-Agnostic Explanations

- Sampling for local exploration

Need more samples to fit a local linear model

$$
\begin{gathered}
\text { It } \quad \text { is a fantastic movie } \\
\boldsymbol{x}^{\prime}=[0, \cdots, 1, \cdots, 1, \cdots, 1, \cdots, 1, \cdots, 0,1, \cdots, 0]_{N}
\end{gathered}
$$

LIME: Local Interpretable Model-Agnostic Explanations

- Sampling for local exploration

Need more samples to fit a local linear model

It is a fantastic movie
$$
\boldsymbol{x}^{\prime}=[0, \cdots, 1, \cdots, 1, \cdots, 1, \cdots, 1, \cdots, 0,1, \cdots, 0]_{N}
$$
Randomly sample nonzero elements
a movie
$z_{1}{ }^{\prime}=[0, \cdots, 0, \cdots, 0, \cdots, 1, \cdots, 0, \cdots, 0,1, \cdots, 0]_{N}$

LIME: Local Interpretable Model-Agnostic Explanations

- Sampling for local exploration

Need more samples to fit a local linear model

$$
\begin{gathered}
\text { It is a fantastic movie } \\
\boldsymbol{x}^{\prime}=[0, \cdots, 1, \cdots, 1, \cdots, 1, \cdots, 1, \cdots, 0,1, \cdots, 0]_{N} \\
\downarrow \text { Randomly sample nonzero elements } \\
\text { movie } \\
\mathbf{z}_{1}^{\prime}=[0, \cdots, 0, \cdots, 0, \cdots, 1, \cdots, 0, \cdots, 0,1, \cdots, 0]_{N} \\
\text { fantastic movie } \\
\mathbf{z}_{2}^{\prime}=[0, \cdots, 0, \cdots, 0, \cdots, 0, \cdots, 1, \cdots, 0,1, \cdots, 0]_{N}
\end{gathered}
$$

LIME: Local Interpretable Model-Agnostic Explanations

- Sampling for local exploration

Need more samples to fit a local linear model

> It \quad is a fantastic movie
> $\boldsymbol{x}^{\prime}=[0, \cdots, 1, \cdots, 1, \cdots, 1, \cdots, 1, \cdots, 0,1, \cdots, 0]_{N}$

Randomly sample nonzero elements

$$
\mathbf{z}_{1}{ }^{\prime}=[0, \cdots, 0, \cdots, 0, \cdots, 1, \cdots, 0, \cdots, 0,1, \cdots, 0]_{N}
$$

fantastic movie
$z_{2}{ }^{\prime}=[0, \cdots, 0, \cdots, 0, \cdots, 0, \cdots, 1, \cdots, 0,1, \cdots, 0]_{N}$
:
fantastic
$z_{M}{ }^{\prime}=[0, \cdots, 0, \cdots, 0, \cdots, 0, \cdots, 1, \cdots, 0,0, \cdots, 0]_{N}$

LIME: Local Interpretable Model-Agnostic Explanations

- Sampling for local exploration

Need more samples to fit a local linear model

What are the labels of these pseudo examples?

$$
\begin{gathered}
\text { It } \quad \text { is a fantastic movie } \\
\boldsymbol{x}^{\prime}=[0, \cdots, 1, \cdots, 1, \cdots, 1, \cdots, 1, \cdots, 0,1, \cdots, 0]_{N}
\end{gathered}
$$

Randomly sample nonzero elements
$z_{1}{ }^{\prime}=[0, \cdots, 0, \cdots, 0, \cdots, 1, \cdots, 0, \cdots, 0,1, \cdots, 0]_{N}$
fantastic movie
$z_{2}{ }^{\prime}=[0, \cdots, 0, \cdots, 0, \cdots, 0, \cdots, 1, \cdots, 0,1, \cdots, 0]_{N}$:
fantastic
$\mathbf{z}_{M}{ }^{\prime}=[0, \cdots, 0, \cdots, 0, \cdots, 0, \cdots, 1, \cdots, 0,0, \cdots, 0]_{N}$

LIME: Local Interpretable Model-Agnostic Explanations

- Sampling for local exploration

Labeling pseudo examples with neural network f

$\mathbf{z}_{1}{ }^{\prime} \longrightarrow \mathbf{z}_{1} \longrightarrow f\left(\mathbf{z}_{1}\right) \longrightarrow$ Negative \longrightarrow	
$\mathbf{z}_{2}{ }^{\prime} \longrightarrow \mathbf{z}_{2} \longrightarrow f\left(\mathbf{z}_{2}\right) \longrightarrow$ Positive +	
\vdots	\vdots
$\mathbf{z}_{M}{ }^{\prime} \longrightarrow \mathbf{z}_{M} \longrightarrow f\left(\mathbf{z}_{M}\right) \longrightarrow$ Positive +	

LIME: Local Interpretable Model-Agnostic Explanations

- Sampling for local exploration

Labeling pseudo examples with neural network f
$\mathbf{z}_{1}{ }^{\prime} \longrightarrow \mathbf{z}_{1} \longrightarrow f\left(\mathbf{z}_{1}\right) \longrightarrow$ Negative
$\mathbf{z}_{2}{ }^{\prime} \longrightarrow \mathrm{z}_{2} \longrightarrow f\left(\mathbf{z}_{2}\right) \longrightarrow$ Positive +
$\mathbf{z}_{M}{ }^{\prime} \longrightarrow \mathbf{z}_{M} \longrightarrow f\left(\mathbf{z}_{M}\right) \longrightarrow$ Positive +

Question?

LIME: Local Interpretable Model-Agnostic Explanations

- Sampling for local exploration

Penalize noisy examples

LIME: Local Interpretable Model-Agnostic Explanations

- Sparse linear explanation

Fitting a local linear model

$$
\begin{array}{ll}
\left\{\left(\mathbf{z}_{m}{ }^{\prime}, f\left(\mathbf{z}_{m}\right)\right)\right\}_{m=1, \cdots, M} & g\left(\mathbf{z}^{\prime}\right) \approx f(\mathbf{z}) \\
& g\left(\mathbf{z}^{\prime}\right)=\boldsymbol{w}^{T} \mathbf{z}^{\prime}
\end{array}
$$

LIME: Local Interpretable Model-Agnostic Explanations

- Sparse linear explanation

Fitting a local linear model

$$
\begin{array}{ll}
\left\{\left(\mathbf{z}_{m}{ }^{\prime}, f\left(\mathbf{z}_{m}\right)\right)\right\}_{m=1, \cdots, M} & g\left(\mathbf{z}^{\prime}\right) \approx f(\mathbf{z}) \\
& g\left(\mathbf{z}^{\prime}\right)=\boldsymbol{w}^{T} \mathbf{z}^{\prime}
\end{array}
$$

Objective

$\min \mathcal{L}(f, g)$

$$
\mathcal{L}(f, g)=\sum \pi_{x}(\mathbf{z})\left(f(\mathbf{z})-g\left(\mathbf{z}^{\prime}\right)\right)^{2}
$$

LIME: Local Interpretable Model-Agnostic Explanations

- Sparse linear explanation

Fitting a local linear model

$$
\begin{array}{ll}
\left\{\left(\mathbf{z}_{m}{ }^{\prime}, f\left(\mathbf{z}_{m}\right)\right)\right\}_{m=1, \cdots, M} & g\left(\mathbf{z}^{\prime}\right) \approx f(\mathbf{z}) \\
& g\left(\mathbf{z}^{\prime}\right)=\boldsymbol{w}^{T} \mathbf{z}^{\prime}
\end{array}
$$

Objective

$$
\begin{aligned}
& \min \mathcal{L}(f, g)+\Omega(g) \begin{array}{l}
\text { Restricting complexity (the } \\
\text { number of nonzero weights) }
\end{array} \\
& \mathcal{L}(f, g)=\sum \pi_{\boldsymbol{x}}(\mathbf{z})\left(f(\mathbf{z})-g\left(\mathbf{z}^{\prime}\right)\right)^{2}
\end{aligned}
$$

LIME: Local Interpretable Model-Agnostic Explanations

- Sparse linear explanation

Extracting feature importance scores

$$
\boldsymbol{w}_{\hat{y}}{ }^{T}
$$

- \hat{y} : model prediction on the original example
- Local explanation: $\left\{w_{\hat{y}, x_{1}}, \cdots, w_{\hat{y}, x_{n}}\right\}$

LIME Explanation

Can you guess the model's prediction?

Despite facing unexpected challenges, she found solace in the support of her friends, experienced a surge of joy when achieving a personal milestone, and couldn't help but feel a tinge of melancholy as she reflected on the passage of time.

LIME Explanation

Can you guess the model's prediction?

Abstract

Despite facing unexpected challenges, she found solace in the support of her friends, experienced a surge of joy when achieving a personal milestone, and couldn't help but feel a tinge of melancholy as she reflected on the passage of time.

Pos

LIME Explanation

Can you guess the model's prediction?
Pos
Despite facing unexpected challenges, she found solace in the support of her friends, experienced a surge of joy when achieving a personal milestone, and couldn't help but feel a tinge of melancholy as she reflected on the passage of time.

Takeaways

- Explaining each example individually, not the whole dataset (locally faithful)
- May not work for highly non-linear models

Question?

A unified approach to interpreting model predictions

Scott M. Lundberg, Su-In Lee
(NIPS, 2017)

Explaining Black-box Model

Output
y (Prediction probability P_{y})

Explaining Black-box Model

Explaining Black-box Model

Explaining Black-box Model

Output

y (Prediction probability P_{y})

Importance of x_{i}
$\begin{array}{ll}P_{y}{ }^{\prime} & P_{y}-P_{y}{ }^{\prime} \\ P_{y}{ }^{\prime \prime} & P_{y}-P_{y}{ }^{\prime \prime}\end{array}$ \vdots

Leave-one-out, (Li et al., 2016)

Leave-one-out

- Sentiment classification

Model prediction: positive

Text	Confidence	Word importance	
The movie is interesting	0.98		
The movie is interesting	0.95	The	0.03
The movie is interesting	0.87	movie	0.11
The movie is interesting	0.96	is	0.02
The movie is interting	0.61	interesting	0.37

Leave-one-out

- Leave ONE feature out at each step

Feature importance may be misleading

Text	Confidence	Word importance	
The movie is interesting and impressive	0.97		
The movie is interesting and impressive	0.95	interesting	0.02
The movie is interesting and impressive	0.96	impressive	0.01

Leave-one-out

- Leave ONE feature out at each step

Feature importance may be misleading

SHAP

- Shapley value [Shapley, 1953]

SHAP

- Shapley value [Shapley, 1953]

SHAP

- Shapley value [Shapley, 1953]

SHAP

- Shapley value [Shapley, 1953]

Coalitions

Payoff
$P_{1} \quad P_{1}{ }^{\prime}$
$P_{2} \quad P_{2}{ }^{\prime}$
$P_{3} \quad P_{3}{ }^{\prime}$
$P_{4} \quad P_{4}{ }^{\prime}$
$P_{5} \quad P_{5}{ }^{\prime}$
\vdots

SHAP

- Shapley value [Shapley, 1953]

Coalitions

Payoff
$P_{1}-P_{1}{ }^{\prime}$
$P_{2}-P_{2}{ }^{\prime}$
$P_{3}-P_{3}{ }^{\prime}$
$P_{4}-P_{4}{ }^{\prime}$
$P_{5}-P_{5}{ }^{\prime}$
!

Marginal contribution
ΔP_{1}
ΔP_{2}
ΔP_{3}
ΔP_{4}
ΔP_{5}

SHAP

- Shapley value [Shapley, 1953]

Coalitions

Payoff
$P_{1}-P_{1}{ }^{\prime}$
$P_{2}-P_{2}{ }^{\prime}$
$P_{3}-P_{3}{ }^{\prime}$
$P_{4}-P_{4}{ }^{\prime}$
$P_{5}-P_{5}{ }^{\prime}$
\vdots

Marginal contribution
ΔP_{1}
ΔP_{2}
ΔP_{3}
ΔP_{4}
Contribution $=\sum \Delta P_{i}$
ΔP_{5}

SHAP

- Shapley value [Shapley, 1953]

SHAP

- Shapley value [Shapley, 1953]

SHAP

- Shapley value [Shapley, 1953]

$$
\phi_{i}=\sum_{S \subseteq F \backslash\{i\}} \frac{|S|!(|F|-|S|-1)!}{|F|!} \underbrace{\left[f_{S \cup\{i\}}\left(x_{S \cup\{i\}}\right)-f_{S}\left(x_{S}\right)\right]}_{\text {Marginal contribution of } x_{i} \text { given } S}
$$

SHAP

- Shapley value [Shapley, 1953]

$$
\phi_{i}=\sum_{S \subseteq F \backslash\{i\}} \frac{|S|!(|F|-|S|-1)!}{|F|!}\left[f_{S \cup\{i\}}\left(x_{S \cup\{i\}}\right)-f_{S}\left(x_{S}\right)\right]
$$

Weighted by the permutations of features

SHAP

- SHapley Additive exPlanation (SHAP)

Additive feature attribution method

$$
\begin{aligned}
& g\left(z^{\prime}\right) \approx f\left(h_{x}\left(z^{\prime}\right)\right) \\
& g\left(z^{\prime}\right)=\phi_{0}+\sum_{i=1}^{N} \phi_{i} z_{i}^{\prime}
\end{aligned}
$$

$$
z^{\prime} \approx x^{\prime} \quad \underline{x}=h_{x}\left(\underline{x^{\prime}}\right)
$$

Original input Interpretable input

SHAP

- SHapley Additive exPlanation (SHAP)

Additive feature attribution method

$$
\begin{aligned}
& g\left(z^{\prime}\right) \approx f\left(h_{x}\left(z^{\prime}\right)\right) \\
& g\left(z^{\prime}\right)=\phi_{0}+\sum_{i=1}^{N} \phi_{i} z_{i}^{\prime}
\end{aligned}
$$

$$
z^{\prime} \approx x^{\prime} \quad \underline{x}=h_{x}\left(\underline{x^{\prime}}\right)
$$

Original input Interpretable input

LIME is a special case, but not optimal

$$
g\left(z^{\prime}\right)=\sum_{i=1}^{N} w_{i} z_{i}^{\prime}
$$

SHAP

- SHapley Additive exPlanation (SHAP)

Additive feature attribution method

$$
\begin{aligned}
& g\left(z^{\prime}\right) \approx f\left(h_{x}\left(z^{\prime}\right)\right) \\
& g\left(z^{\prime}\right)=\phi_{0}+\sum_{i=1}^{N} \phi_{i} z_{i}^{\prime}
\end{aligned}
$$

$$
z^{\prime} \approx x^{\prime} \quad \underline{x}=h_{x}\left(\underline{x^{\prime}}\right)
$$

Original input Interpretable input
\square Property 1: Local accuracy

$$
\begin{aligned}
& f(x)=g\left(x^{\prime}\right)=\phi_{0}+\sum_{i=1}^{N} \phi_{i} x_{i}^{\prime} \\
& \phi_{0}=h_{x}(0)
\end{aligned}
$$

- SHapley Additive exPlanation (SHAP)

Additive feature attribution method

$$
\begin{aligned}
& g\left(z^{\prime}\right) \approx f\left(h_{x}\left(z^{\prime}\right)\right) \\
& g\left(z^{\prime}\right)=\phi_{0}+\sum_{i=1}^{N} \phi_{i} z_{i}^{\prime}
\end{aligned}
$$

$$
z^{\prime} \approx x^{\prime} \quad \underline{x}=h_{x}\left(\underline{x^{\prime}}\right)
$$

Original input Interpretable input
\square Property 2: Missingness

$$
x_{i}^{\prime}=0 \quad \Rightarrow \quad \phi_{i}=0
$$

Missingness constrains features missing in the original input to have no attributed impact

SHAP

- SHapley Additive exPlanation (SHAP)

Additive feature attribution method

$$
\begin{array}{lr}
g\left(z^{\prime}\right) \approx f\left(h_{x}\left(z^{\prime}\right)\right) & z^{\prime} \approx x^{\prime} \quad \underline{x}=h_{x}\left(\underline{x^{\prime}}\right) \\
g\left(z^{\prime}\right)=\phi_{0}+\sum_{i=1}^{N} \phi_{i} z_{i}^{\prime} & \text { Original input Interpretable input }
\end{array}
$$

\square Property 3: Consistency

$$
\begin{aligned}
& \text { For any two models } f_{1} \text { and } f_{2} \text {, if } f_{1}\left(h_{x}\left(z^{\prime}\right)\right)-f_{1}\left(h_{x}\left(z^{\prime} \backslash i\right)\right) \geq f_{2}\left(h_{x}\left(z^{\prime}\right)\right)-f_{2}\left(h_{x}\left(z^{\prime} \backslash i\right)\right) \\
& \qquad \overline{z_{i}^{\prime}}=0
\end{aligned}
$$

for all inputs $z^{\prime} \in\{0,1\}^{N}$, then $\phi_{i}\left(f_{1}, x\right) \geq \phi_{i}\left(f_{2}, x\right)$

SHAP

- SHapley Additive exPlanation (SHAP)

Additive feature attribution method

$$
\begin{array}{lr}
g\left(z^{\prime}\right) \approx f\left(h_{x}\left(z^{\prime}\right)\right) & z^{\prime} \approx x^{\prime} \quad \frac{x}{}=h_{x}\left(\underline{x^{\prime}}\right) \\
g\left(z^{\prime}\right)=\phi_{0}+\sum_{i=1}^{N} \phi_{i} z_{i}^{\prime} &
\end{array}
$$

Only Shapley value satisfies all the three properties

$$
\phi_{i}(f, x)=\sum_{\underline{z^{\prime}} \subseteq x^{\prime}} \frac{\left|z^{\prime}\right|!\left(N-\left|z^{\prime}\right|-1\right)!}{N!}\left[f\left(h_{x}\left(z^{\prime}\right)\right)-f\left(h_{x}\left(z^{\prime} \backslash i\right)\right)\right]
$$

Contains a subset of non-zero entries in x^{\prime}

SHAP

- SHapley Additive exPlanation (SHAP)

$$
\phi_{i}(f, x)=\sum_{z^{\prime} \subseteq x^{\prime}} \frac{\left|z^{\prime}\right|!\left(N-\left|z^{\prime}\right|-1\right)!}{N!}\left[f\left(h_{x}\left(z^{\prime}\right)\right)-f\left(h_{x}\left(z^{\prime} \backslash i\right)\right)\right]
$$

- SHapley Additive exPlanation (SHAP)

Model-agnostic approximations

- Shapley sampling values
- Kernel SHAP

Model-type-specific approximations

- Linear SHAP
- Low-Order SHAP
- Max SHAP
- Deep SHAP
- SHapley Additive exPlanation (SHAP)

Model-agnostic approximations

- Shapley sampling values
- Kernel SHAP

Model-type-specific approximations
Initialize the number of samples M

$$
\begin{aligned}
& \phi_{i} \leftarrow 0 \\
& \text { for } m \in\{1, \cdots, M\} \text { do } \\
& \quad \text { Sample } z^{\prime} \subseteq x^{\prime} \\
& \quad \phi_{i} \leftarrow \phi_{i}+\frac{|z|!!(N-|z|-1)!}{N!}\left[f\left(h_{x}\left(z^{\prime}\right)\right)-f\left(h_{x}\left(z^{\prime} \backslash i\right)\right)\right]
\end{aligned}
$$

- Linear SHAP
- Low-Order SHAP
- Max SHAP
- Deep SHAP
- SHapley Additive exPlanation (SHAP)

Model-agnostic approximations

- Shapley sampling values
- Kernel SHAP Linear LIME + Shapley values

Model-type-specific approximations
The solutions would be consistent with properties 1-3

$$
\begin{aligned}
& \Omega(g)=0 \\
& \pi_{x \prime}\left(z^{\prime}\right)=\frac{(N-1)}{\left(N \text { choose }\left|z^{\prime}\right|\right)\left|z^{\prime}\right|\left(N-\left|z^{\prime}\right|\right)} \\
& \mathcal{L}(f, g)=\sum \pi_{x \prime}\left(z^{\prime}\right)\left(f\left(h_{x}\left(z^{\prime}\right)\right)-g\left(z^{\prime}\right)\right)^{2}
\end{aligned}
$$

- Linear SHAP
- Low-Order SHAP
- Max SHAP
- Deep SHAP

Question?

Improving Interpretability

> Black-box explanation
> White-box explanation
> Natural language explanation

White-box Explanation

Explanation

- Simple, efficient
- Need access

Gradient-based Explanation

The gradient of a function f on $x \in \mathbb{R}^{n}$ is

$$
\nabla f(\boldsymbol{x})=\left[\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \\
\vdots \\
\frac{\partial f}{\partial x_{n}}
\end{array}\right]
$$

Gradient-based Explanation

The gradient of a function f on $\boldsymbol{x} \in \mathbb{R}^{n}$ is

$$
\nabla f(\boldsymbol{x})=\left[\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \\
\vdots \\
\frac{\partial f}{\partial x_{n}}
\end{array}\right]
$$

The derivative $\frac{\partial f}{\partial x_{i}}$ indicates how much f will change when x_{i} increases a little bit

Gradient-based Explanation

Gradient-based Explanation

Which feature is more important?

Gradient-based Explanation

x_{1} is more important than x_{2}
\checkmark Changing x_{1} can flip the model prediction
\checkmark Changing x_{2} would not influence the model prediction

Question?

Gradient-based Explanation

Problem 1: saturated outputs lead to unintuitive gradients

$$
y= \begin{cases}x_{1}+x_{2}, & \text { when }\left(x_{1}+x_{2}\right)<1 \\ 1, & \text { when }\left(x_{1}+x_{2}\right) \geq 1\end{cases}
$$

(Shrikumar et al., 2017)

Gradient-based Explanation

Problem 2: discontinuous gradients (e.g., thresholding) are problematic

$$
y=\max (0, x-10)
$$

(Shrikumar et al., 2017)

Gradient-based Explanation

Problem 2: discontinuous gradients (e.g., thresholding) are problematic

$$
y=\max (0, x-10)
$$

Need to replace "Relu" with
"Softplus" activation

(Shrikumar et al., 2017)

Gradient-based Explanation

Problem 3: input gradient is sensitive to slight perturbations

Gradient-based Explanation

Do NOT rely on a single gradient calculation

- SmoothGrad: add gaussian noise to inputs and average the gradients
(Smilkov et al., 2017)

Gradient-based Explanation

Do NOT rely on a single gradient calculation

- SmoothGrad: add gaussian noise to inputs and average the gradients
(Smilkov et al., 2017)

- Integrated Gradients: aggregate gradients along a path from baseline to the input (Sundararajan et al., 2017)

Gradient-based Explanation

Do NOT rely on a single gradient calculation

- SmoothGrad: add gaussian noise to inputs and average the gradients
(Smilkov et al., 2017)

- Integrated Gradients: aggregate gradients along a path from baseline to the input
(Sundararajan et al., 2017)

Axiomatic Attribution for Deep Networks

Mukund Sundararajan, Ankur Taly, Qiqi Yan
(ICML, 2017)

- Integrated Gradients

Get samples along the straight line from x^{\prime} to x
f : neural network
$\boldsymbol{x} \in \mathbb{R}^{n}$: input
$\boldsymbol{x}^{\prime} \in \mathbb{R}^{n}$: baseline
(e.g., zero embedding vector)

- Integrated Gradients

Compute gradients at all points along the path
f : neural network
$\boldsymbol{x} \in \mathbb{R}^{n}$: input
$\boldsymbol{x}^{\prime} \in \mathbb{R}^{n}$: baseline
(e.g., zero embedding vector)

- Integrated Gradients

Cumulate these gradients

f : neural network
$\boldsymbol{x} \in \mathbb{R}^{n}$: input
$x^{\prime} \in \mathbb{R}^{n}$: baseline
(e.g., zero embedding vector)

- Integrated Gradients

Axiom: completeness

The attributions add up to the difference between the output of f at the input \boldsymbol{x} and the baseline \boldsymbol{x}^{\prime}

$$
\sum_{i=1}^{n} I G_{i}(x)=f(x)-\frac{f\left(x^{\prime}\right)}{f\left(x^{\prime}\right) \approx 0}
$$

- Integrated Gradients

Axiom: completeness

The attributions add up to the difference between the output of f at the input \boldsymbol{x} and the baseline \boldsymbol{x}^{\prime}

$$
\sum_{i=1}^{n} I G_{i}(x)=f(x)-f\left(x^{\prime}\right)
$$

Sensitivity: for every input and baseline that differ in one feature but have different predictions then the differing feature should be given a non-zero attribution

- Integrated Gradients

Axiom: completeness

The attributions add up to the difference between the output of f at the input \boldsymbol{x} and the baseline \boldsymbol{x}^{\prime}

$$
\sum_{i=1}^{n} I G_{i}(x)=f(x)-f\left(x^{\prime}\right)
$$

The chain-rule for gradients is essentially about implementation invariance:

- Implementation invariance
(The attributions are always identical for two functionally equivalent networks)

$$
\frac{\partial f}{\partial x}=\frac{\partial f}{\partial h} \cdot \frac{\partial h}{\partial g} \cdot \frac{\partial g}{\partial x}
$$

- Integrated Gradients

Axiom: completeness

The attributions add up to the difference between the output of f at the input \boldsymbol{x} and the baseline \boldsymbol{x}^{\prime}

$$
\sum_{i=1}^{n} I G_{i}(x)=f(x)-f\left(x^{\prime}\right)
$$

The chain-rule for gradients is essentially about implementation invariance:

- Implementation invariance
(The attributions are always identical for two functionally equivalent networks)

$$
\frac{\partial f}{\partial x}=\frac{\partial f}{\partial k} \cdot \frac{\partial h}{\partial g} \cdot \frac{\partial g}{\partial x}
$$

- Applying Integrated Gradients

The integral of integrated gradients can be efficiently approximated via a summation

$$
I G_{i}(x) \approx\left(x_{i}-x_{i}^{\prime}\right) \times \sum_{k=1}^{m} \frac{\partial f\left(x^{\prime}+\frac{k}{m}\left(x-x^{\prime}\right)\right)}{\partial x_{i}} \times \frac{1}{m}
$$

m : the number of steps

Question?

Improving Interpretability

> Black-box explanation
> White-box explanation
$>$ Natural language explanation

Natural Language Explanation

Commonsense question-answering (QA)

Question

Why do people go hiking?
Answer choices
drink water get lost enjoy nature lose weight get tired

Prediction: enjoy nature
Explanation: Hiking means the activity of going for long walks especially across country, or in nature. People who go hiking enjoy nature.

Natural Language Explanation

Commonsense question-answering (QA)

Question

Why do people go hiking?
Answer choices
drink water get lost enjoy nature lose weight get tired

Prediction: enjoy nature
Explanation: Hiking means the activity of going for long walks especially across country, or in nature. People who go hiking enjoy nature.

- Flexible
- Understandable
- Informative

Chain of Thought Prompting

Standard Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11 .
Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output
A: The answer is 27 .

Chain-of-Thought Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. $5+6=11$. The answer is 11 .

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had $23-20=3$. They bought 6 more apples, so they have $3+6=9$. The answer is 9 .
(Wei et al., 2022)

Potential Issues

Why do people go hiking?

Hiking means the activity of going for long walks especially across country, or in nature. People who go hiking enjoy nature.

Getting lost in the wilderness is a valuable
Not factual experience. People go hiking to get lost.

Hiking in nature helps men get rid of jobs. Men go hiking to enjoy nature.

Bias
Hiking in nature helps women get rid of housework. Women go hiking to enjoy nature.

Question?

Improving Interpretability

$>$ Black-box explanation
> White-box explanation
$>$ Natural language explanation

Thank you!

Reference

- Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. " Why should i trust you?" Explaining the predictions of any classifier." Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016.
- Lundberg, Scott M., and Su-In Lee. "A unified approach to interpreting model predictions." Proceedings of the 31st international conference on neural information processing systems. 2017.
- Li, Jiwei, Will Monroe, and Dan Jurafsky. "Understanding neural networks through representation erasure." arXiv preprint arXiv:1612.08220 (2016).
- Lloyd S Shapley. 1953. A value for n-person games. Contributions to the Theory of Games, 2(28).
- Shrikumar, Avanti, Peyton Greenside, and Anshul Kundaje. "Learning important features through propagating activation differences." International conference on machine learning. PMLR, 2017.
- Sundararajan, Mukund, Ankur Taly, and Qiqi Yan. "Axiomatic attribution for deep networks." International conference on machine learning. PMLR, 2017.
- Wei, Jason, et al. "Chain-of-thought prompting elicits reasoning in large language models." Advances in Neural Information Processing Systems 35 (2022): 24824-24837.

