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https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Neural Language Models

ChatGPT

Math

Marshall walks a total of 0.9 kilometres to and from school each day. After 4 days, how
many kilometres will he have walked?

Marshall walks 0.9 * 2 = 1.8 kilometres to and from school each day.
So after 4 days, he will have walked 1.8 * 4 = 7.2 kilometres.



https://colah.github.io/posts/2015-08-Understanding-LSTMs/

ChatGPT

Coding

m Write a python code to rank "3, 1, 7, 2, 5"

Here's a code to rank the numbers in ascending order:

() Copy code

numbers =

numbers O

for i, num in enumerate(numbers):
print(f )

Output:

[7) Copy code



https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Neural Language Models

ChatGPT

Translating Poem

Can you translate "Bzt R KE %, BEFNBAEE" into English?

"The scattered shadows slant across the shallow and clear water, a subtle fragrance floats 7 -~/
in the yellow dusk of the moon."



https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Can | trust it?

API| Access



https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Complexity

Interpretability

\


https://colah.github.io/posts/2015-08-Understanding-LSTMs/

What is Interpretability?

The degree to which humans can understand models’ decision making
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What is Interpretability?

The degree to which humans can understand models’ decision making
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What is Interpretability?

The degree to which humans can understand models’ decision making

%

(‘\

Have no idea about the
model decision making

11



Deep Neural Networks Lack Interpretability

Can | trust them?

12



¢ )
Blackbox models are devils

[Mista kes

E‘ RIS

Think about this step by step and only then produce a solution.

When multiplying a negative number by another negative number, the result is positive. In
this case, -1 * -1=1. Then, when we multiply this result by another -1, we get -1*1*-1=
-1*-1="1. Therefore, the final result is 1.

Source: https://github.com/giuven95/chatgpt-failures
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¢ )
Blackbox models are devils

[Mista kes]

ﬂ RIS

Think about this step by step and only then produce a solution.

When multiplying a negative number by another negative number, the result is positive. In
this case, -1 * -1=1. Then, when we multiply this result by another -1, we get -1*1*-1=
-1*-1="1. Therefore, the final result is 1.

Source: https://github.com/giuven95/chatgpt-failures
Source: https://boingboing.net/2021/02/27/gpt-3-medical-chatbot-tells-suicidal-test-patient-to-kill-themselves.html
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¢ )
Blackbox models are devils

[Mista kes]

ﬂ RIS

Think about this step by step and only then produce a solution.

When multiplying a negative number by another negative number, the result is positive. In
this case, -1 * -1=1. Then, when we multiply this result by another -1, we get -1*1*-1=
-1*-1="1. Therefore, the final result is 1.

Source: https://github.com/giuven95/chatgpt-failures
Source: https://boingboing.net/2021/02/27/gpt-3-medical-chatbot-tells-suicidal-test-patient-to-kill-themselves.html
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Interpretability is Crucial

Real Wor
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Benchmark
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What?
How?
Why?
When?
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» Black-box explanation

» White-box explanation

» Natural language explanation



Improving Interpretability

» Black-box explanation

19



Input Output

Explanation

Inferring the relationship between input
features and the output



Input features Importance Model prediction

X1 ay
X2

an
xn

ldentifying important features



Post-hoc Explanation

* Movie review

Task: predicting the sentiment of a text (positive or negative)

Input Explanation
Pos
3 X e, =011 @ j oS
clever X, Output a; = 0.46 -
. B S az = 0.01 iece 0
piece X3 e positive ’ £

a4 = _002 Of

of
X4 l ~0.5
cinema | x: as = 0.06  [CEN Neg

(Word saliency map)
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Input Output

Explanation

How do we learn the feature importance?



"Why Should I Trust You?"
Explaining the Predictions of Any Classifier

Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin

(KDD, 2016)



e Linear model Global interpretation

Feature Importance
h,(x)=w,"x x €{0,1}"
Y Y T " Wy x1
: : Xl N
- w,, j: the contribution of x; v2 Wy xp2
- Higher weights indicate more important features
xvn 777777777777777777777 ” Wy}xvn




Linear model Global interpretation

Feature Importance
hy(x) =w,"x x €{0,1}"
| | Wy xyq
- Wy, j: the contribution of x; Xvz| "1 Wy,
- Higher weights indicate more important features
Xyn| 7 Wy,xvn

Logistic regression

“It” “is” “‘a’ “fantastic” “‘movie”
[Negl w, 0.89 072 1.13 -1.92 0.34 1.16
[Pos| w; 085 082 1.05 2.21 0.26 5.19

Prediction: positive



Global interpretation is not capable of explaining each specific model prediction

- Neural networks can capture complex relationships between features
and the response

- The meaning of a feature may vary across different examples

adjective , of a favorable character or tendency

ugoodn
noun

something that has economic utility or
satisfies an economic want

27



Global interpretation is not capable of explaining each specific model prediction

- Neural networks can capture complex relationships between features
and the response

- The meaning of a feature may vary across different examples

adjective , of a favorable character or tendency

good something that has economic utility or

noun . pe .
satisfies an economic want

Local interpretation
Explaining model prediction
per example by identifying
local feature importance

28



LIME: Local Interpretable Model-Agnostic Explanations

29



ldea: using local linear model to approximate neural network for each example

Decision boundary of a neural
network f

Blue/pink background represents
negative (-) /positive (+) class

Bold red cross: the instance x being
explained

Dashed line: local linear model g

g=~f

30



LIME: Local Interpretable Model-Agnostic Explanations

* Data representations

Neural network f Linear model g

X = [xll X, " an] x’ — [xlly x,2; ;x,N]
Feature representation Feature representation
X; € R4 is uninterpretable x'; € {0,1}is interpretable
(word embedding) (bag-of-words)

n: the number of features in the example
N: the number of all features

31



* Data representations

Neural network f

X = [xl'xZJ "':xn]

Text

good

movie

\ 4

v

Vocab

Linear model g

!

/ /
x f— [xl,xz’ooo

good

movie
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* Sampling for local exploration

Need more samples to fit a local linear model

It is a fantastic movie
x' P [O’...’l,...,]_’...,1,...,1,...’0, 1,...,O]N




* Sampling for local exploration

Need more samples to fit a local linear model

It is a fantastic movie
x' P [O’...’l,...,]_’...,1,...,1,...’0, 1,...,O]N

Randomly sample nonzero elements

a movie
z,'=1o0,---,0,---,0,--,1,---,0,---,0,1,---, 0] y



* Sampling for local exploration

Need more samples to fit a local linear model
It is a fantastic movie

x' — [O’...,l,...,]_’...,1,...,1,...’0, 11"'10]N

Randomly sample nonzero elements

a movie
z,'=1o0,---,0,---,0,--,1,---,0,---,0,1,---, 0] y

fantastic movie
Z2’ — [O, ...’O, ...’0, ...’0’ e, ]_’ ...’(), 1’ ...,O]N



* Sampling for local exploration

Need more samples to fit a local linear model
It is a fantastic movie

x' — [O’...,l,...,]_’...,1,...,1,...’0, 11"'10]N

Randomly sample nonzero elements

a movie
le — [O’ ...’O, ...,O, e, 1’ e, 0, ...’O, 1’ e, O]N
fantastic movie

Z2’ — [O, ...’O, ...’0, ...’0’ e, ]_’ ...’O, 1’ ...,O]N

fantastic
zy' =[0,--,0,,0,-++,0,---,1,+,0,0,, 0]y



* Sampling for local exploration

What are the labels of
these pseudo examples?

<

Need more samples to fit a local linear model

It is a fantastic movie
x' P [O’...’l,...,]_’...,1,...,1,...’0, 1,...,O]N

l Randomly sample nonzero elements

a movie
/ le — [O’...’O,...,O,...’1’...,0,...’0’ 1)'":0]N

fantastic movie
Z2’ — [O, ...’O, ...’0, ...’0’ e, ]_’ ...’(), 1’ ...,O]N

fantastic

. zy' =1[0,---,0,---,0,-+,0,+-,1,---,0,0,++, 0]y



LIME: Local Interpretable Model-Agnostic Explanations

* Sampling for local exploration

Labeling pseudo examples with neural network f

z,/ —— z, —— f(z;) —— Negative @

!

z,), —— z, — f(z;) — Positive +

!/

Zy ——— " Zy f(ZM) —— Positive =

38



LIME: Local Interpretable Model-Agnostic Explanations

* Sampling for local exploration

fantastic movie

a movie

Labeling pseudo examples with neural network f

z,

!

Z)

Zy

!/

— zy — f(zy) —— Negative @

— z, — f(z;) —— Positive

— 2z — f(zy) — Positive

=

-+

39



Question?

40



LIME: Local Interpretable Model-Agnostic Explanations

* Sampling for local exploration

Penalize noisy examples
Distance between x and z,,,
nx(zm) = e(—D(x,Zm)Z/O'Z)

D : cosine distance

41



LIME: Local Interpretable Model-Agnostic Explanations

e Sparse linear explanation

A a |

Fitting a local linear model

{(Zm” f (Zm))}m= 1, ,M

9(z) = f(2)

gz) =w'z

42



e Sparse linear explanation

Fitting a local linear model

{(zn. f @)} sy 9(z') ~ f(2)

g(z)=w'z

+1e Objective

L min L(f, g)

L(f.9) = ) m@ (@) — g(2))?



LIME: Local Interpretable Model-Agnostic Explanations

e Sparse linear explanation

Fitting a local linear model

{(zn. f @)} sy 9(z') ~ f(2)

g(z)=w'z

Objective

Restricting complexity (the

min L(f, g) + Q(g) number of nonzero weights)

L(f.9) = ) m@ (@) — g(@))’

44



e Sparse linear explanation

Extracting feature importance scores

T
[ Wy
+ 10
’ 5 M M . .

+% - J: model prediction on the original example
+ g0

+’ .
_:-,'o. -  Local explanatlon: {Wy’xl, vee Wy’xn}




LIME Explanation
Can you guess the model’s prediction?

Despite facing unexpected challenges, she found solace in the support
of her friends, experienced a surge of joy when achieving a personal
milestone, and couldn't help but feel a tinge of melancholy as she

reflected on the passage of time.

46



LIME Explanation

Can you guess the model’s prediction?

Pos

Despite facing unexpected challenges, she found solace in the - I
of her friends, experienced a surge ofwhen achieving a personal
milestone, and couldn't help but feel a tinge of melancholy as she l

reflected on the passage of time.
Neg
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LIME Explanation

Can you guess the model’s prediction?

Pos

Despite facing unexpected challenges, she found solace in the - I
of her friends, experienced a surge ofwhen achieving a personal
milestone, and couldn't help but feel a tinge of melancholy as she l

reflected on the passage of time.
Neg
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* Explaining each example individually, not the whole dataset (locally faithful)

* May not work for highly non-linear models

49



Question?

50



A unified approach to interpreting model predictions

Scott M. Lundberg, Su-In Lee

(NIPS, 2017)

51



Input

X1 Xo -

Xn

Output

Y (Prediction probability P)



Input Output
X
X1 X2 Xn ~ ¥ (Prediction probability P)
Importance of x;
XT X2 Xn Py’ Py—Py’



Input Output
X
X1 X2 - Xp ~ ¥ (Prediction probability P)
Importance of x;
X X2 - Xp Py’ Py—Py’
X1 ¥z - Xn Py” Py—Py”



Input Output
X
X1 X2 - Xp ~ ¥ (Prediction probability P)
Importance of x;
X X2 - Xp Py’ Py—Py’
X1 ¥z - Xn Py” Py—Py”

Leave-one-out, (Li et al., 2016)



Sentiment classification

Model prediction: positive

Text Confidence Word importance
The movie is interesting 0.98
—Fhe movie is interesting 0.95 The 0.03
The+rewie is interesting 0.87 movie 0.11
The movie s interesting 0.96 is 0.02
The movie istaterestne 0.61 interesting  0.37



Leave ONE feature out at each step

Feature importance may be misleading

Text Confidence Word importance
The movie is interesting and impressive 0.97

The movie is +ateresting and impressive 0.95 interesting  0.02
The movie is interesting and +mpressive 0.96 impressive  0.01

57



Leave ONE feature out at each step

Feature importance may be misleading

Text Confidence Word importance
The movie is interesting and impressive 0.97

The movie is +ateresting and impressive 0.95 interesting  0.02
The movie is interesting and +mpressive 0.96 impressive  0.01

feature importance

Need a better way to quantify

58



SHAP

* Shapley value [Shapley, 1953]

e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e - -

e e o o e e e e e - - - ———
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SHAP

* Shapley value [Shapley, 1953]
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SHAP

* Shapley value

Coalitions

't .6‘

O*

x €X

.
©

&

xE £X

.
©

&

(2%)

[Shapley, 1953]
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SHAP

* Shapley value [Shapley, 1953]

Coalitions

®

x EX &

.
©

&
E X

&

(2%)
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* Shapley value

Coalitions

[Shapley, 1953]

Marginal contribution

AP,

AP,

AP,

AP,

AP,
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SHAP

* Shapley value [Shapley, 1953]

Coalitions

®

%.9

x EX &

o
0‘

(QQ
Co

&

(2%)

Marginal contribution

AP,

AP,

AP,

AP,

AP,

Contribution= ), AP;
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SHAP

* Shapley value [Shapley, 1953]

e m m e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e =

e e o o e e e e e - - - ———
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SHAP

* Shapley value [Shapley, 1953]

e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e - -

e e o o e e e e e - - - ———
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SHAP

* Shapley value [Shapley, 1953]

ISIPAF] =S =1)!

;i =

SCF\{i}

|F|!

| fougy (xsuy) — fs(xs)]

Marginal contribution of x; given S

67



SHAP

* Shapley value [Shapley, 1953]

SI'(|F|—|S|—1)!
¢ = z SEAF 151~ 1) | fougy (xsuy) — fs(xs)]

| |F|!
SCR\{i}

l Weighted by the permutations of features

F|!

(F[ =S = 1)!

|S]!

68



 SHapley Additive exPlanation (SHAP)
Additive feature attribution method

g(z") = f(hx(zl)) z = x X = hx(ﬁ)

Original input Interpretable input

N
9() = do+ ) bz
i=1



SHapley Additive exPlanation (SHAP)

Additive feature attribution method

g(z") = f(hx(zl))

N
9() = do+ ) bz
i=1

LIME is a special case, but not optimal

N
g(z') = Z w;z;'
i=1

Z

!

~
~y

X

, X = hx(ﬁ)
Original input Interpretable input

70



 SHapley Additive exPlanation (SHAP)
Additive feature attribution method

g(z") = f(hx(zl)) z = x X = hx(ﬁ)
Original input Interpretable input

N
9() = do+ ) bz
i=1

O Property 1: Local accuracy

N

FO) = g() = by + ) it
i=1

$o = hy(0)



SHapley Additive exPlanation (SHAP)
Additive feature attribution method

g(z") = f(hx(zl)) z = x X = hx(ﬁ)
Original input Interpretable input

N
9() = do+ ) bz
i=1

O Property 2: Missingness

Missingness constrains features missing in the

!/
x; =0 ¢ =0 original input to have no attributed impact



SHapley Additive exPlanation (SHAP)
Additive feature attribution method

g(z") = f(hx(zl)) z = x X = hx(ﬁ)
Original input Interpretable input

N
9() = do+ ) bz
i=1

d Property 3: Consistency

For any two models f; and f5, if f1(hye(2) — f1(he(z'\D) = fo(hx(2) = fo(hy(z'\D))

,—
Zl-—O

for all inputs z’ € {0, 1}V, then ¢; (f1, x) = ¢;(f5, x)



SHapley Additive exPlanation (SHAP)
Additive feature attribution method

g(z") = f(hx(zl)) z = x X = hx(ﬁ)

Original input Interpretable input

N
9() = do+ ) bz
i=1

Only Shapley value satisfies all the three properties

"N = |2'| = 1)!
puir = > PN D e @) — Flhaz\)]

ZICXx!

Contains a subset of non-zero entries in x’

74



SHAP

 SHapley Additive exPlanation (SHAP)

TN —|Z']| — 1)!
pig0 =y O ELZ D 60 (@) - f(he@\D)

zZIcx/

Challenge

Computational complexit
0(2™)

75



SHapley Additive exPlanation (SHAP)

Model-agnostic approximations

- Shapley sampling values

- Kernel SHAP

Model-type-specific approximations

Linear SHAP

Low-Order SHAP

Max SHAP

Deep SHAP



SHapley Additive exPlanation (SHAP)

Model-agnostic approximations
Initialize the number of samples M
- Shapley sampling values b, — 0

- Kernel SHAP form e {1,---,M} do
Sample z' € x'

di — ¢y + I £ (hy () — f(he(2'\D)]

Model-type-specific approximations

- Linear SHAP

- Low-Order SHAP
- Max SHAP

- Deep SHAP



SHapley Additive exPlanation (SHAP)

Model-agnostic approximations

- Shapley sampling values

- | Kernel SHAP | Linear LIME + Shapley values

Model-type-specific approximations

- Linear SHAP

- Low-Order SHAP
- Max SHAP

- Deep SHAP

The solutions would be consistent with properties 1-3

0(g9) =0
N -1)
(N choose |z'|)|z'|(N — |Z'])

L(f9) = ) @) (F (@) - 9(2))?

Ty (2') =



Question?
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Improving Interpretability

» White-box explanation

80



White-box Explanation

o -
= = ==
= —— -
-~ -
-~

\\éf’/Gradients, Attentions
Explanation

 Simple, efficient
* Need access

81



Gradient-based Explanation

The gradient of a function f on x € R™ is
- af -
0x4

o

10X,

Vi(x) =

Source: https://towardsdatascience.com/basics-gradient-input-as-explanation-bca79bb80de0

82



Gradient-based Explanation

The gradient of a function f on x € R™ is

o7 o

0x, The derivative ox; indicates how
Vilx) = : much f will change when x;

i increases a little bit

10Xy,

Source: https://towardsdatascience.com/basics-gradient-input-as-explanation-bca79bb80de0

83



Gradient-based Explanation

X2 7 Model f - fx)

______

afi 4 Gradient

The influence of “tiny change” to the
feature on the model prediction

______



Gradient-based Explanation

X2

Which feature is more important?

85



Gradient-based Explanation

X2

X1 is more important than x,

v’ Changing x; can flip the model prediction

v’ Changing x, would not influence the
model prediction

86



Question?

87



Gradient-based Explanation

Problem 1: saturated outputs lead to unintuitive gradients

g+ xp, when (x; + x,) < 1
Y711, when (x; +x,) =1
S
X1 = 1, Xy = 1
The gradient on x4 or x5 is
1r : 0, but that does not mean
/ neither is important

0 1 2 X1 + X2

(Shrikumar et al., 2017)

88



Gradient-based Explanation

Problem 2: discontinuous gradients (e.g., thresholding) are problematic

y = max(0,x — 10)

y A
The gradient changes dramatically
0 10 x

(Shrikumar et al., 2017)

89



Gradient-based Explanation

Problem 2: discontinuous gradients (e.g., thresholding) are problematic

y = max(0,x — 10)

Need to replace “Relu” with

Y “Softplus” activation

The gradient changes dramatically | -

41— Softplus(f=1)

- Softplus(f =5)
y
y
1.
| . o

0 10 T R
X

(Shrikumar et al., 2017)

90



Gradient-based Explanation

Problem 3: input gradient is sensitive to slight perturbations

X2

91



Gradient-based Explanation

Do NOT rely on a single gradient calculation

 SmoothGrad: add gaussian noise to
inputs and average the gradients

(Smilkov et al., 2017)

ply|x)

Source: EMNLP 2020 Tutorial on Interpreting Predictions of NLP Models 92



Gradient-based Explanation

Do NOT rely on a single gradient calculation

 SmoothGrad: add gaussian noise to * Integrated Gradients: aggregate gradients
inputs and average the gradients along a path from baseline to the input
(Smilkov et al., 2017) (Sundararajan et al., 2017)

p(y[x) p(ylx)

Source: EMNLP 2020 Tutorial on Interpreting Predictions of NLP Models 93



Gradient-based Explanation

Do NOT rely on a single gradient calculation

 SmoothGrad: add gaussian noise to * Integrated Gradients: aggregate gradients
inputs and average the gradients along a path from baseline to the input
(Smilkov et al., 2017) (Sundararajan et al., 2017)

p(y[x) p(ylx)

Source: EMNLP 2020 Tutorial on Interpreting Predictions of NLP Models 4



Axiomatic Attribution for Deep Networks

Mukund Sundararajan, Ankur Taly, Qigi Yan

(ICML, 2017)



* Integrated Gradients
Get samples along the straight line from x' to x

f: neural network X

4
4

x € R™: input

x' € R™ : baseline

(e.g., zero embedding vector) E T x4 a(x—x) ae€(0,1)
1

X



* Integrated Gradients
Compute gradients at all points along the path

f: neural network
x € R™: input —

x € R" : baseline ol
. SN
(e.g., zero embedding vector) \' xX'+alx—x) a€e(0,1)

2

X



* Integrated Gradients
Cumulate these gradients

f: neural network

//./'
x € R™: input A
x' € R™: baseline e
. ’/'\
(e.g., zero embedding vector) A X +alx—x) a€e(0,1)
x 4

1 ! A
16,(x) = (x; —xl-')xj of ¥ +ax=x))

On the it" dimension



* Integrated Gradients

Axiom: completeness

The attributions add up to the difference between the output of f at the input x
and the baseline x'

> 160 = F(@) - f@)
= FO) ~ 0




* Integrated Gradients

Axiom: completeness

The attributions add up to the difference between the output of f at the input x
and the baseline x'

Sensitivity: for every input and

n
z IG;(x) = f(x) — f(x) baseline th.at differ in o.ne.feature
— but have different predictions

then the differing feature should
be given a non-zero attribution

Sensitivity
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* Integrated Gradients

Axiom: completeness

The attributions add up to the difference between the output of f at the input x
and the baseline x'

n
, The chain-rule for gradients is essentially
Z 1Gi(x) = f(0) = f(X)  Spout implementation invariance:
i=1

- )
Sensitivity ’
R N S N
Implementation invariance T
of of oh o

(The attributions are always identical for — .
two functionally equivalent networks) 0x 0Oh 0g Ox o



* Integrated Gradients

Axiom: completeness

The attributions add up to the difference between the output of f at the input x
and the baseline x'

n
, The chain-rule for gradients is essentially
Z 1Gi(x) = f(0) = f(X)  Spout implementation invariance:
i=1

- )
Sensitivity ’
Implementation invariance T

of of \8h.

(The attributions are always identical for — .
two functionally equivalent networks) Ox Oh 0g. Ox
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* Applying Integrated Gradients

The integral of integrated gradients can be efficiently approximated via a summation

m 0f(x’+%(x—x’)> 1
16,() ~ (xi = %)% ) x

0x; m
k=1

m: the number of steps
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Improving Interpretability

» Natural language explanation
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Commonsense question-answering (QA)

Question

Why do people go hiking?
Answer choices

drink water get lost enjoy nature lose weight get tired

(29) Prediction: enjoy nature

Explanation: Hiking means the activity of going for long walks especially across
country, or in nature. People who go hiking enjoy nature.



Commonsense question-answering (QA)

Question

Why do people go hiking?
Answer choices

drink water get lost enjoy nature lose weight get tired

Prediction: enjoy nature

Explanation: Hiking means the activity of going for long walks especially across
country, or in nature. People who go hiking enjoy nature.

Flexible
Understandable
Informative



Chain of Thought Prompting

Standard Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples

do they have?
_ J

do they have?
\_ J

Chain-of-Thought Prompting

~

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A:
The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples

A: The answer is 27. x

A:

answer is 9. \/

(Wei et al., 2022)
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Potential Issues

Why do people go hiking?

@ Hiking means the activity of going for long Y
walks especially across country, or in nature.
People who go hiking enjoy nature.

@ Getting lost in the wilderness is a valuable x Not factual
experience. People go hiking to get lost.

@ Hiking in nature helps men get rid of jobs.
Men go hiking to enjoy nature.

Q Bias

@ Hiking in nature helps women get rid of
nousework. Women go hiking to enjoy nature.
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Improving Interpretability
» Black-box explanation
» White-box explanation

» Natural language explanation
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Thank you!
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