Alexa, can you help me?

I don't know what to do.

Dialog Systems

jsedoc@jhu.edu Johns Hopkins Computer Science

Chatbots are Ubiquitous: Personal Agents, Games, Education, Business & Medicine

Lots of Tools

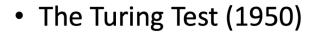
https://docs.google.com/spreadsheets/d/1RgG-dRS42EHIG7QdJOTg2ZO587KutTTPeUfyxVKoIn8/edit#gid=0

Artificial Intelligence

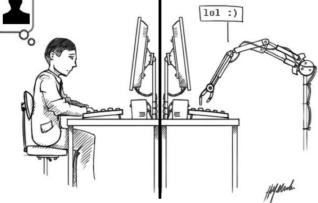
- Can robots understand language?
- Can robots actually think?

Not clear definition of intelligence or how to

measure it!

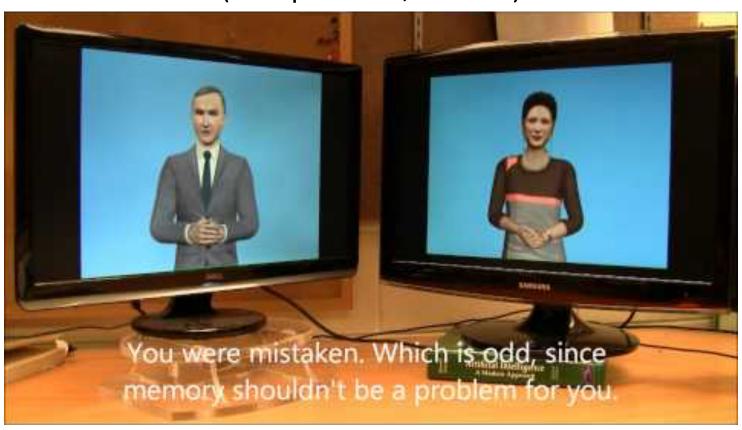


 Indirect assessment of intelligent behaviour



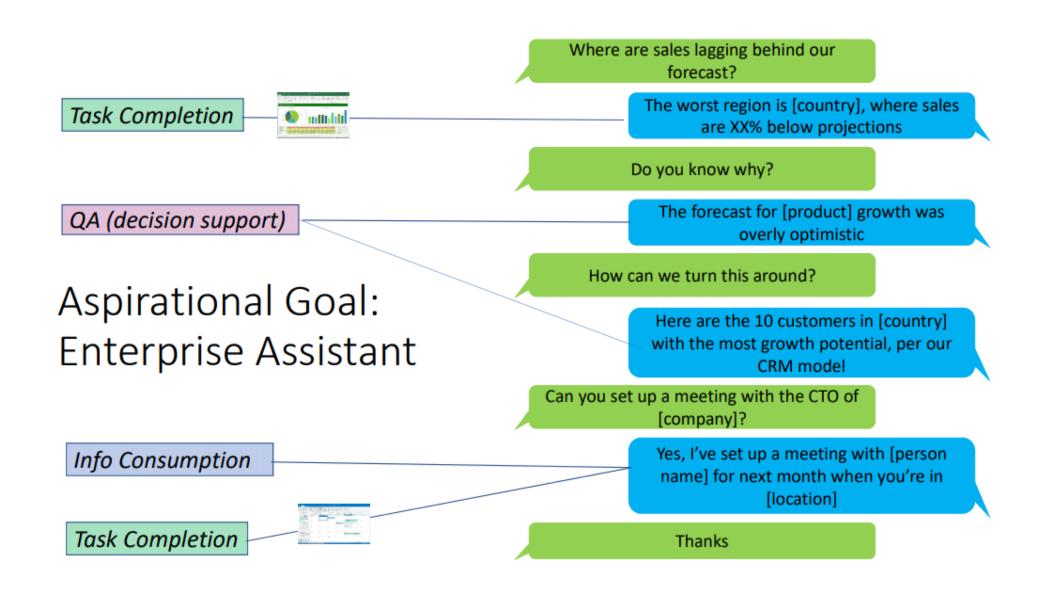
(Image adapted from: http://www.clubic.com/mag/culture/actualite-751397-imitation-game-alan-turing-pere-informatique.html)

Al with Al conversations: Cleverbot (Carpenter, 2011)

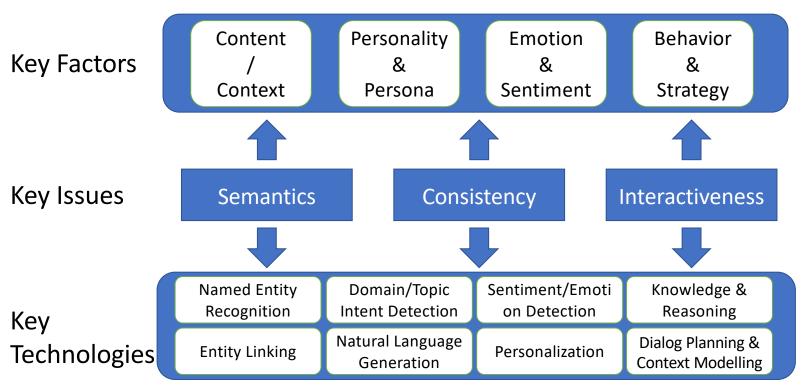


Challenges for Artificial Intelligence

- Knowledge Representation
 - about learning, storing and retrieving relevant information about the world and one's previous experiences
- Commonsense reasoning*
 - about using world
 knowledge for interpreting,
 explaining and predicting
 daily life events and
 outcomes

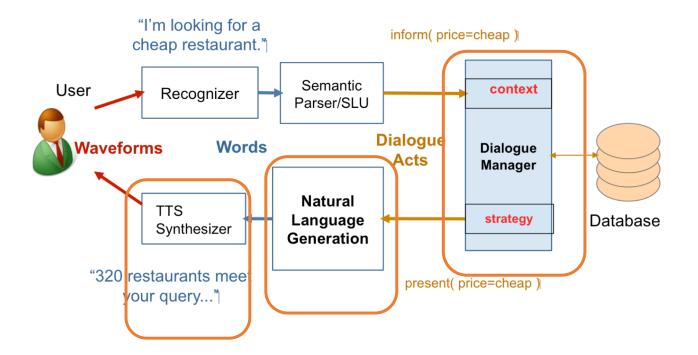


Challenges for Conversational Agents



From Huang et al., 2019, "Challenges in Building Intelligent Open-Domain Systems"

Spoke Dialog System Architecture



Two Types of Systems

- 1. Chatbots
- 2. Goal-based (Dialog agents)
 - SIRI, interfaces to cars, robots, ...
 - Booking flights, restaurants, or question answering

Chatbot Architectures

Rule-based

1. Pattern-action rules (Eliza)+ a mental model (Parry)

Corpus-based (from large chat corpus)

- 2. Information Retrieval
- 3. Neural network encoder-decoder

Eliza pattern/transform rules

```
(0 YOU 0 ME) [pattern]

→
(WHAT MAKES YOU THINK I 3 YOU)
[transform]
```

0 means Kleene *The 3 is the constituent # in pattern

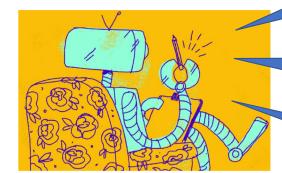
You hate me WHAT MAKES YOU THINK I HATE YOU

Personality in chatbots: Eliza and Parry

Eliza

Good Evening. Tell me your problems.

Parry



People get on my nerves sometimes.

I am not sure I understand you fully.

You should pay more attention.

Suppose you should pay more attention.

You're entitled to your own opinion.

Chatbot Architectures

Rule-based

- 1. Pattern-action rules (Eliza)
 - + a mental model (Parry)

Corpus-based (from large chat corpus)

- 2. Information Retrieval
- 3. Neural network encoder-decoder

Parry's persona

- 28-year-old single man, post office clerk
- no siblings and lives alone
- sensitive about his physical appearance, his family, his religion, his education and the topic of sex.
- hobbies are movies and gambling on horseracing,
- recently attacked a bookie, claiming the bookie did not pay off in a bet.
- afterwards worried about possible underworld retaliation
- eager to tell his story to non-threating listeners.

Information Retrieval based Chatbots

Idea: Mine conversations of human chats or human-machine chats

Microblogs: Twitter or Weibo (微博)

Movie dialogs

- Cleverbot (Carpenter 2017 http://www.cleverbot.com)
- Microsoft Xiaolce
- Microsoft Tay

Two IR-based Chatbot Architectures

- 1. Return the response to the most similar turn
 - Take user's turn (q) and find a (tf-idf) similar turn t in the corpus C

q = "do you like Doctor Who"

t' = "do you like Doctor Strangelove"

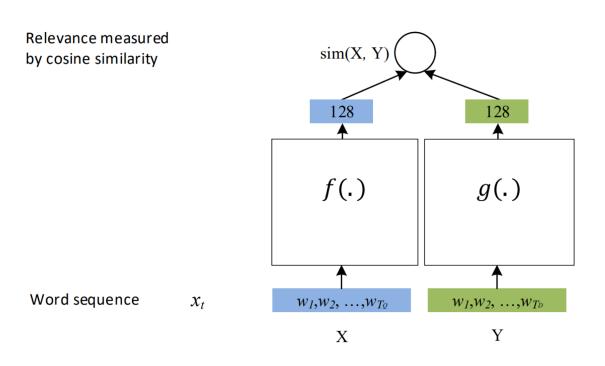
• Grab whatever the response was to *t*.

$$r = response \left(\underset{t \in C}{\operatorname{argmax}} \frac{q^T t}{||q||t||} \right)$$
 Yes, so funny

2. Return the most similar turn

$$r = \operatorname*{argmax}_{t \in C} \frac{q^T t}{||q||t||}$$
 Do you like Doctor Strangelove

Deep Semantic Similarity Model



Learning: maximize the similarity between X (source) and Y (target)

Representation: use DNN to extract abstract semantic features, f or g is a

- Multi-Layer Perceptron (MLP) if text is a bag of words [Huang+ 13]
- Convolutional Neural Network (CNN) if text is a bag of chunks [Shen+ 14]
- Recurrent Neural Network (RNN) if text is a sequence of words [Palangi+ 16]

Chatbot Architectures

Rule-based

- 1. Pattern-action rules (Eliza)
 - + a mental model (Parry)

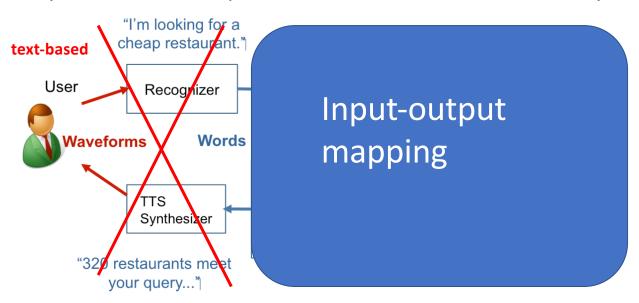
Corpus-based (from large chat corpus)

- 2. Information Retrieval
- 3. Neural network encoder-decoder

Neural Network Encoder-Decoder Generative Models

Response Generation Systems

- End-to-end systems.
- Learn from "raw" dialogue data (e.g. OpenSubtitles).
- No semantic or pragmatic annotation required.
- Mainly successful in open-domain, non-task oriented systems.



Neural Conversation Model (NCM) vs Rule-Based Model (Cleverbot)

User: are you a follower or a leader?

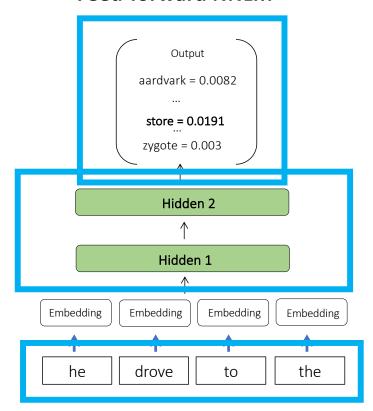
CleverBot: no!!
NCM: i 'm a leader .

Vinyals and Le 2015
"A Neural Conversation Model"

Image borrowed from <u>farizrahman4u/seq2seq</u>

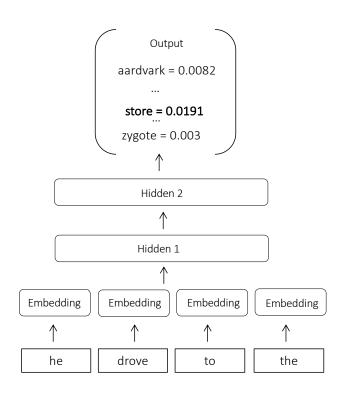
Neural Network Language Models (NNLMs)

Feed-forward NNLM

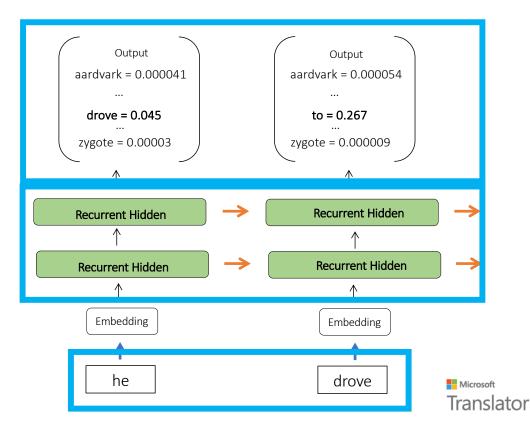


Neural Network Language Models (NNLMs)

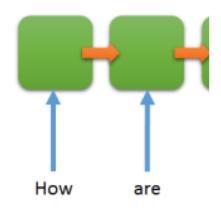
Feed-forward NNLM

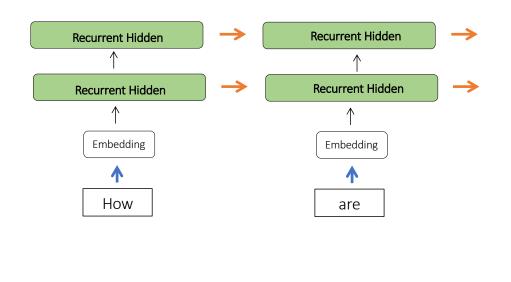


Recurrent NNLM



Sentence Encoder



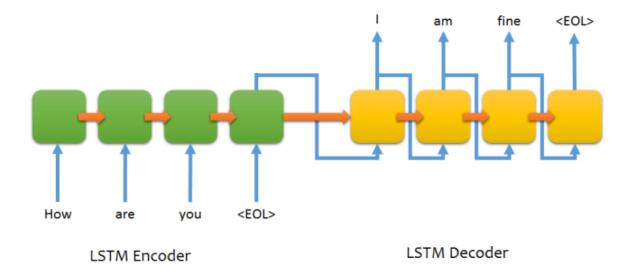


Microsoft
Translator



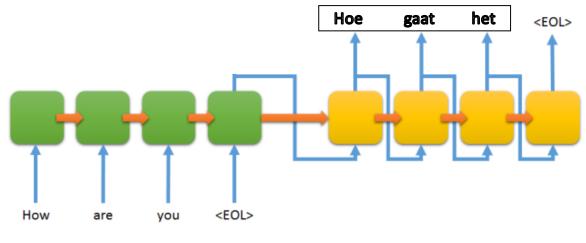
Sutskever et al. 2014
"Sequence to Sequence Learning with Neural Networks"

Image borrowed from farizrahman4u/seq2seq



Vinyals and Le 2015
"A Neural Conversation Model"

Image borrowed from farizrahman4u/seq2seq

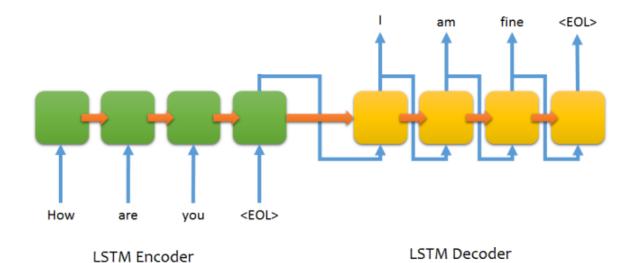


LSTM Encoder

LSTM Decoder

$$1/|\mathcal{S}| \sum_{(T,S) \in \mathcal{S}} \log p(T|S)$$

$$\hat{T} = \arg\max_{T} p(T|S)$$

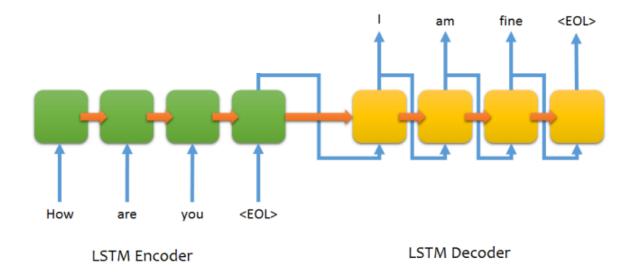


S = Source T = Target

$$1/|\mathcal{S}| \sum_{(T,S) \in \mathcal{S}} \log p(T|S)$$

$$\hat{T} = \arg\max_{T} p(T|S)$$

Neural Conversational Models

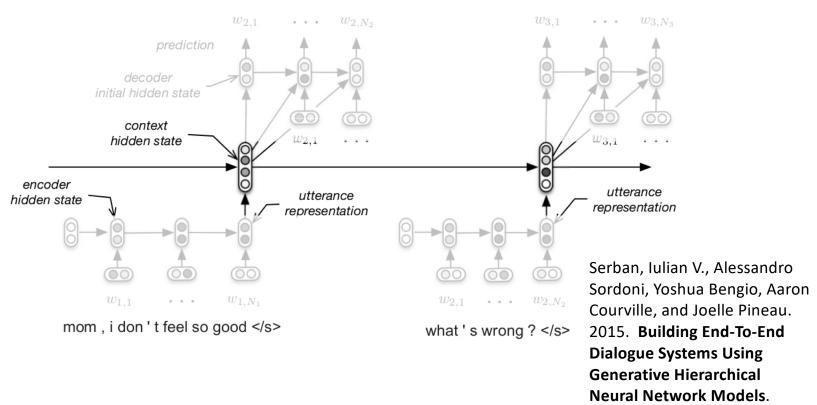


Sequence-to-sequence (Seq2Seq), the probability of the next utterance,

$$P(T \mid S) = P(u_{t+1} \mid u_t) = \prod_{i=1}^{N_t} P(x_{t+1,i} \mid x_{t+1,i-1}, \dots, x_{t+1,1}, f(u_t)),$$

Hierarchical Sequence to Sequence Model

what 's wrong? </s>
i feel like i 'm going to pass out . </s>



Neural Conversational Models

Sequence-to-sequence (Seq2Seq), the probability of the next utterance,

$$P(T \mid S) = P(u_{t+1} \mid u_t) = \prod_{i=1}^{N_t} P(x_{t+1,i} \mid x_{t+1,i-1}, \dots, x_{t+1,1}, f(u_t)),$$

an utterance at turn t is defined as $u_t = x_{t,1}, x_{t,2}, \dots, x_{t,N_t}$

Uninteresting, Bland, and Safe Responses

How was your weekend?

I don't know.

What did you do?

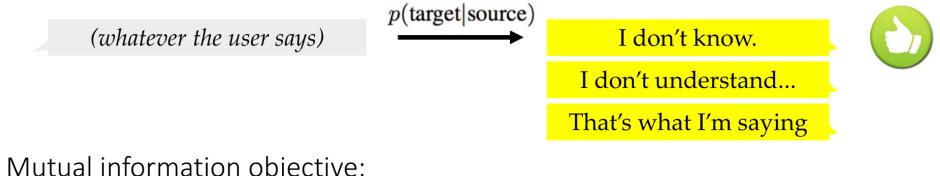
I don't understand what you are talking about.

This is getting boring...

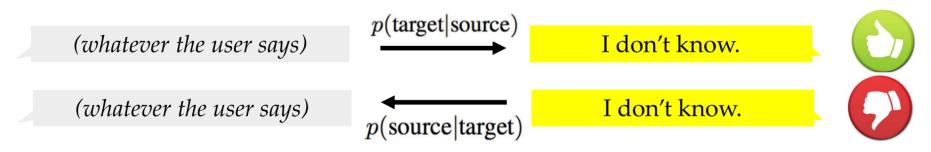
Yes that's what I'm saying.

Uninteresting, Bland, and Safe Responses

Common MLE objective (maximum likelihood)



Mutual information objective:



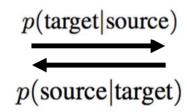
Response Diversity Promotion

Mutual information objective:

$$\hat{T} = \operatorname*{arg\,max}_{T} \left\{ \log \frac{p(S,T)}{p(S)p(T)} \right\}$$

$$\hat{T} = \operatorname*{arg\,max}_{T} \left\{ \begin{array}{|c|c|c} \log p(T|S) & -\lambda \log p(T) \\ & \text{standard} & \text{anti-LM} \\ & \text{likelihood} \end{array} \right.$$

$$\hat{T} = \underset{T}{\operatorname{arg\,max}} \left\{ (1 - \frac{\lambda}{\lambda}) \log p(T|S) + \frac{\lambda}{\lambda} \log p(S|T) \right\}$$

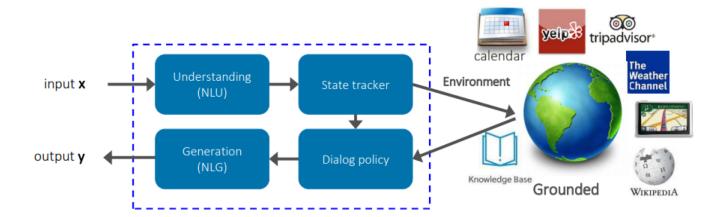


Bayes' rule

Bayes' theorem

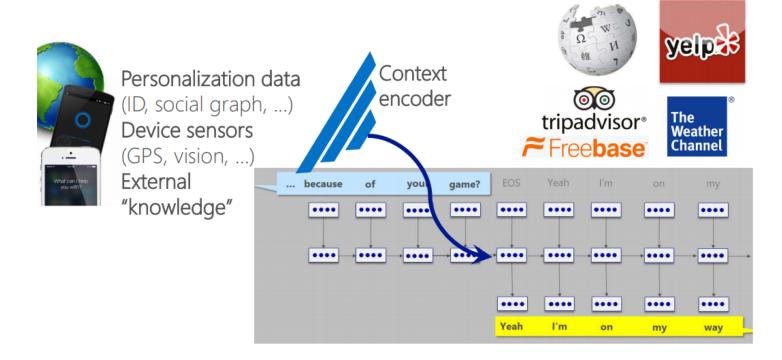
Next Steps for Chatbots

• Knowledge grounding – knowledge bases



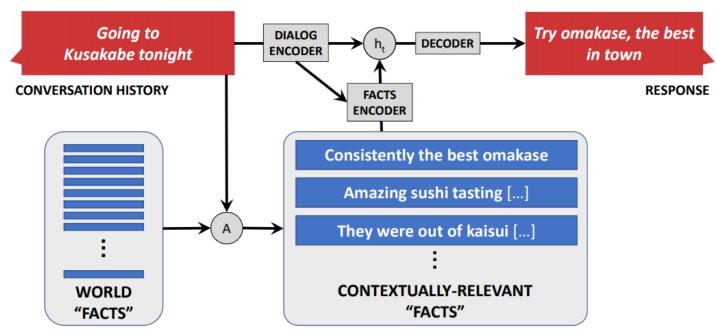
Next Steps for Chatbots

• Knowledge grounding - personalization



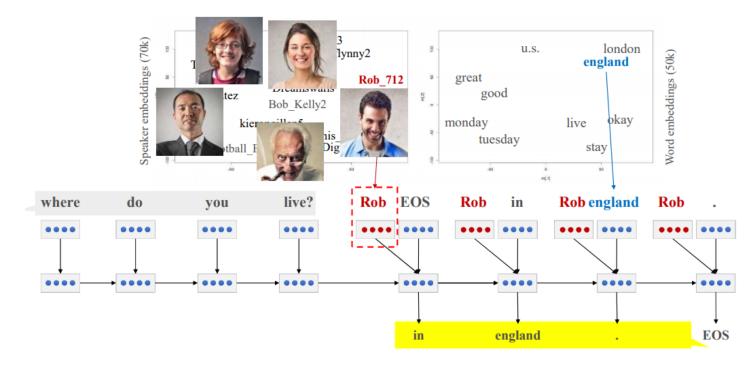
Next Steps for Chatbots

Knowledge grounding – conversational history



Next Steps for Chatbots

• Persona



Chatbots: pro and con

- Pro:
 - Fun
 - Applications to counseling
 - Good for narrow, scriptable applications
- Cons:
 - They don't really understand
 - Rule-based chatbots are expensive and brittle
 - IR-based chatbots can only mirror training data
 - The case of Microsoft Tay
 - (or, Garbage-in, Garbage-out)
 - Generative chatbot are hard to control (more later...)

Two Types of Systems

- 1. Chatbots
- 2. Goal-based (Dialog agents)
 - SIRI, interfaces to cars, robots, ...
 - Booking flights, restaurants, or question answering

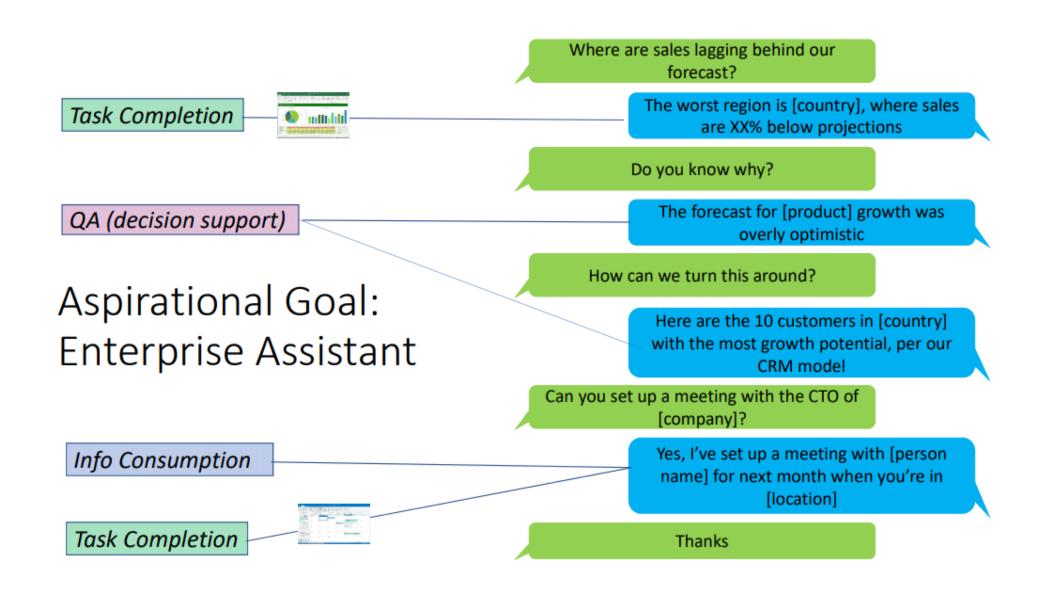
Goal-based (Dialog agents) Task-Oriented

What kinds of problems?

Chitchat (social bot)

"I am smart"	Turing Test ("I" talk like a human)
"I have a question"	Information consumption
"I need to get this done"	Task completion
"What should I do?"	Decision support

Goal-oriented dialogues



Task Representation and NLU

"Show me flights from Edinburgh to London on Tuesday."

```
SHOW:

FLIGHTS:

ORIGIN:

CITY: Edinburgh

DATE: Tuesday

TIME: ?

DEST:

CITY: London

DATE: ?

TIME: ?
```

Slot Filling Dialog

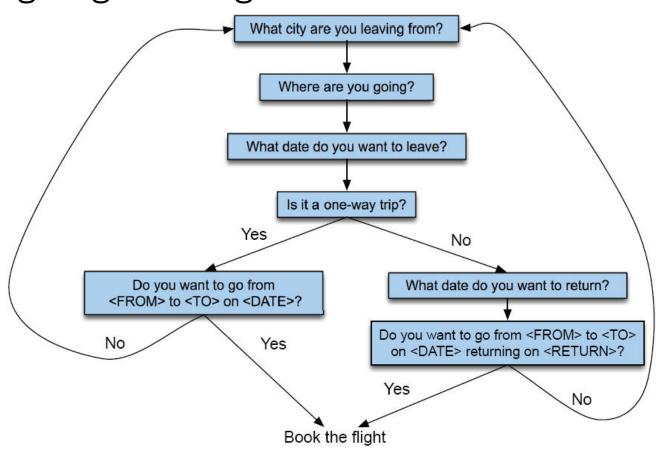
- **Domain**: movie, restaurant, flight, ...
- **Slot**: information to be filled in before completing a task
 - o For Movie-Bot: movie-name, theater, number-of-tickets, price, ...
- Intent (dialog act):
 - Inspired by speech act theory (communication as action) request, confirm, inform, thank-you, ...
 - O Some may take parameters:

thank-you(), request(price), inform(price=\$10)

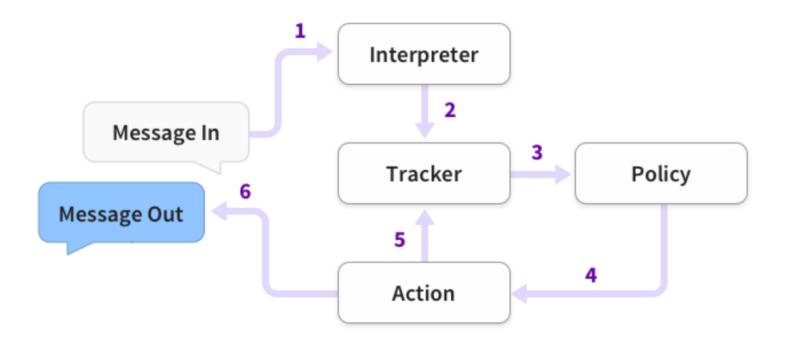
"Is Kungfu Panda the movie you are looking for?"

confirm(moviename="kungfu panda")

Dialog Engineering as Finite State Automata

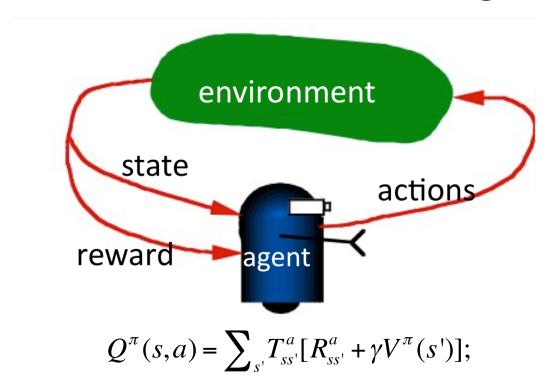


Dialog State Tracking



https://rasa.com/docs/core/architecture/

Reinforcement Learning



Bellmann optimality equation (1952), see [Sutton and Barto, 1998].

The case of Microsoft Tay

- Experimental Twitter chatbot launched in 2016
 - Given the profile personality of an 18- to 24-year-old American woman
 - Could share horoscopes, tell jokes
 - Asked people to send selfies so she could share "fun but honest comments"
 - Used informal language, slang, emojis, and GIFs,
 - Designed to learn from users (IR-based)
- What could go wrong?

The case of Microsoft Tay

RETWEETS

69

LIKES

59

17

The case of Microsoft Tay

• Lessons:

- Tay quickly learned to reflect racism and sexism of Twitter users
- "If your bot is racist, and can be taught to be racist, that's a design flaw. That's bad design, and that's on you." Caroline Sinders (2016).

Gina Neff and Peter Nagy 2016. Talking to Bots: Symbiotic Agency and the Case of Tay. *International Journal of Communication* 10(2016), 4915–4931

Evaluation

Evaluation

- Slot Error Rate for a Sentence
 # of inserted/deleted/subsituted slots
 # of total reference slots for sentence
- 2. End-to-end evaluation (Task Success)

Evaluation of Goal (Task) vs Chatbot (Non-Task)

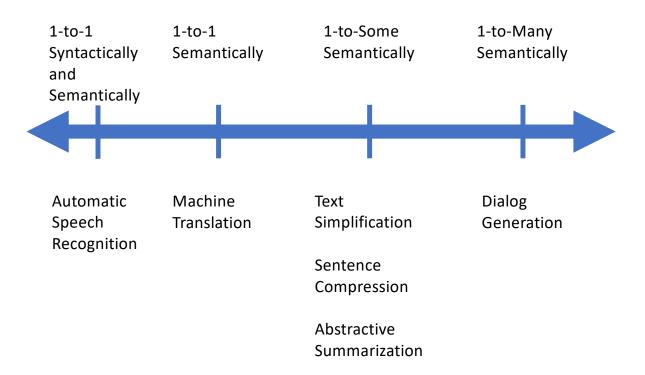
Task-based

- Human
 - End-of-task subjective task success
 - End-of-task ratings
- Automatic
 - Objective task success (Rieser, Keizer, Lemon, 2014)
 - Automatic estimates of User Satisfaction, (Rieser & Lemon, LREC 2008)

Non-task Based

- Human
 - Turn-based appropriateness (WOCHAT)
 - Turn-based pairwise (Li et al. 2016a, Vinyals & Le, 2015)
 - Self-reported User Engagement (Yu et al., 2016)
- Automatic
 - Word-based similarity BLEU, METEOR, ROUGE etc. (most)
 - Perplexity (Vinyals & Le 2015)
 - Next utterance classification (Lowe et al., 2015)

References for Automatic Evaluation



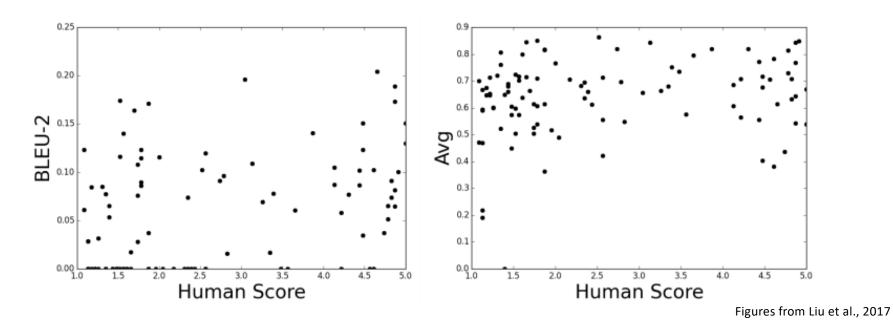
Why Are We Worried about Evaluation?

Tournaments in machine learning and machine translation led to large advances

Amazon Alexa Prize – largely infeasible for academic scale

Current Automatic Metrics Weakly Correlate with Human Judgements

BLEU / METEOR / ROUGE \sim do not correlate with human judgement [Liu et al., 2017; Lowe et al., 2017]



Dialog Evaluation Metrics are an Active Area of Research

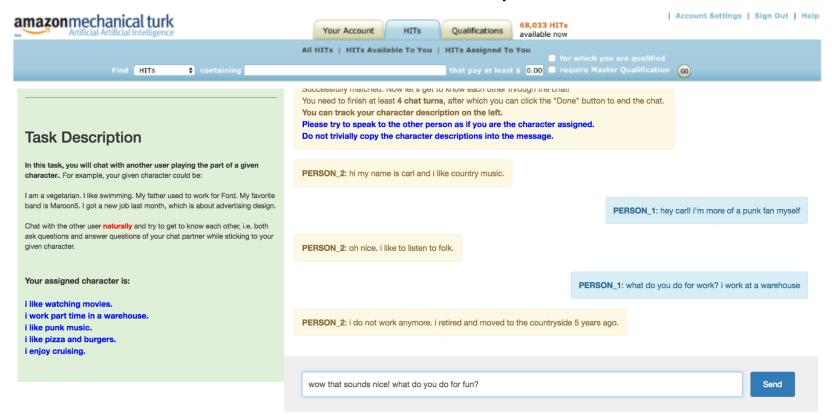
BLEU / METEOR / ROUGE ~ do not correlate with human judgement [Liu et al., 2017; Lowe et al., 2017]

Sentence embedding based metrics

ADEM [Lowe, et al., 2017]
RUBER [Toa, et al., 2017]
Greedy word embeddings [Liu et al., 2017]

Human evaluation is still the gold standard

Interactive Evaluation of Chatbots Requires a Lot of Data == Expensive



Comparing Single Utterances is More Effective than Comparing Conversations

Before starting we will show you an example.

For example, you may be given the conversation:

hey, what's up? hey, want to go to the movies tonight?

Your task is to choose the most appropriate response:

A: sure that sounds great! what movie do you want to see?

B: i know that was hilarious!

Response A is clearly a better answer, as it specifically addresses the question asked in the context.

Ethical Issues

Privacy

