Machine Translation

Kevin Duh

Johns Hopkins University

Number of Languages in the World

6000

MT Applications

- Dissemination:
 - Translate out to many languages, e.g. localization
- Assimilation:
 - Translate into your own language, e.g. cross-lingual search
- Communication
 - Real-time two-way conversation, e.g. the Babelfish!

When I look at an article in Russian, I say: "This is really written in English, but it has been coded in some strange symbols. I will now proceed to decode".

Warry Weavy

Warren Weaver, American scientist (1894-1978)

Image courtesy of: Biographical Memoirs of the National Academy of Science, Vol. 57

Progress in MT

	Seminal SMT paper from IBM			2011-2012: Early deep learning success in speech/vision 2015: Seminal NMT paper (RNN+attention) 2016: Google announces NMT in production 2017: New NMT architecture: Transformer			
Warren Weaver's memo	Founding of SYSTRAN. Development of Rule- based MT (RBMT)		DARPA TIDES, GALE, BOLT programs Open-source of Moses toolkit Development of Statistical MT (SMT)				Ν
1947	1968	19	993	Early	2000s	2010 s	-Present

Outline

- 1. Background: Intuitions, SMT
- 2. NMT: Recurrent Model with Attention
- 3. NMT: Transformer Model
- 4. NMT with Large Language Models

Rule-Based Machine Translation (RBMT)

- Rule-based systems:
 - build dictionaries
 - write transformation rules

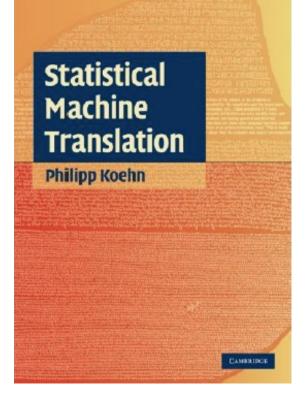
```
"have" :=
```

```
if
```

```
subject(animate)
and object(owned-by-subject)
then
translate to "kade... aahe"
if
subject(animate)
and object(kinship-with-subject)
then
translate to "laa... aahe"
if
subject(inanimate)
then
translate to "madhye... aahe"
```

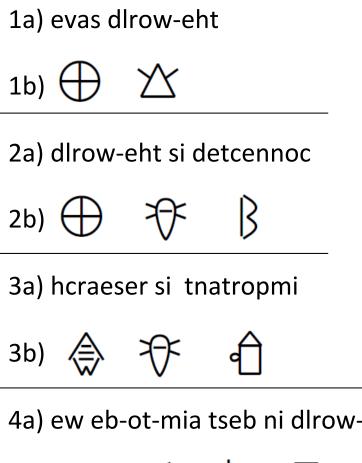
Statistical Machine Translation (SMT)

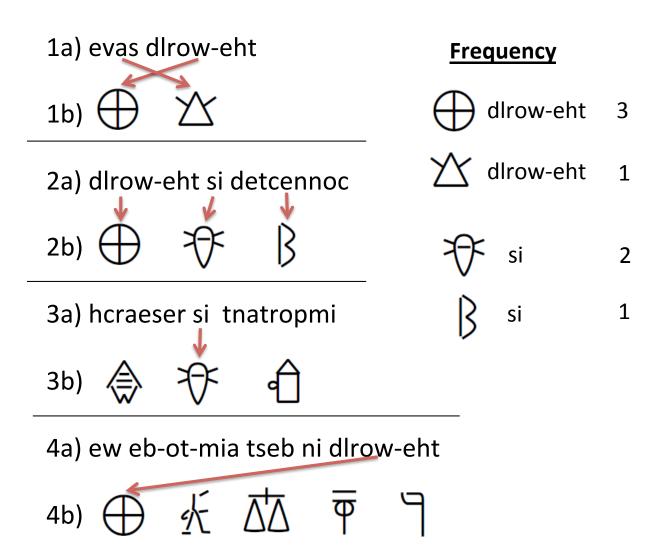
- Data-driven:
 - Learn dictionaries from data
 - Learn transformation "rules" from data
- SMT usually refers to a set of data-driven techniques around 1980-2015. It's often distinguished from neural network models (NMT), but note that NMT also uses statistics!

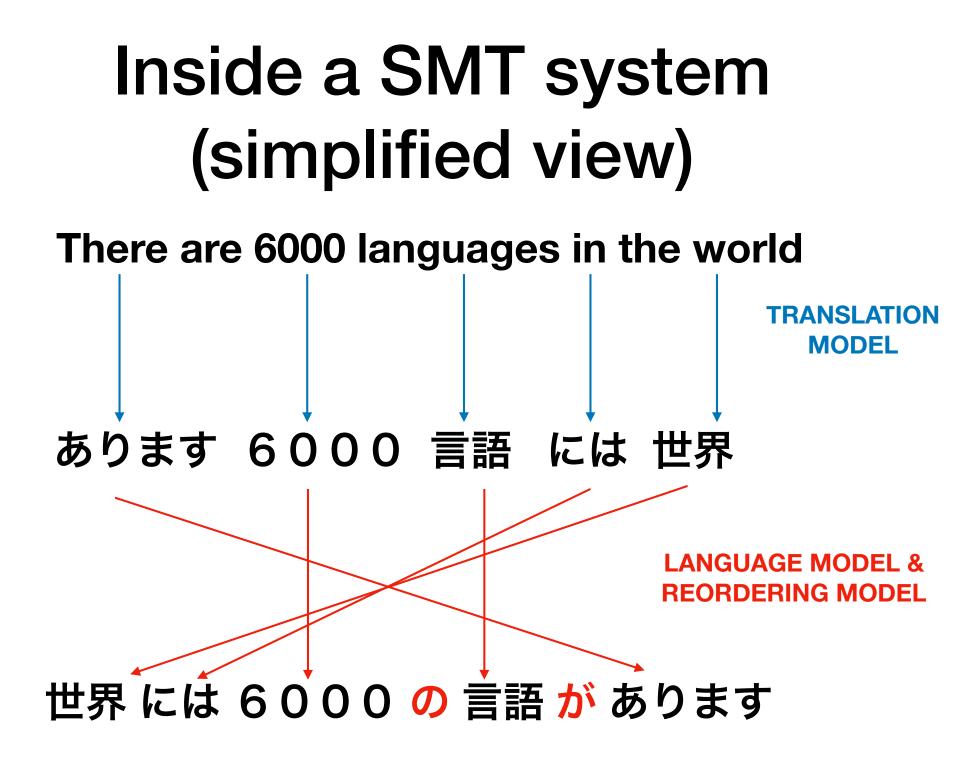


How to learn from data?

- Assume bilingual text (bitext), a.k.a. parallel text
 - Each sentence in Language A is aligned to its translation in Language B
- Assume we have lots of this. Now, we can proceed to "decode"







SMT vs NMT

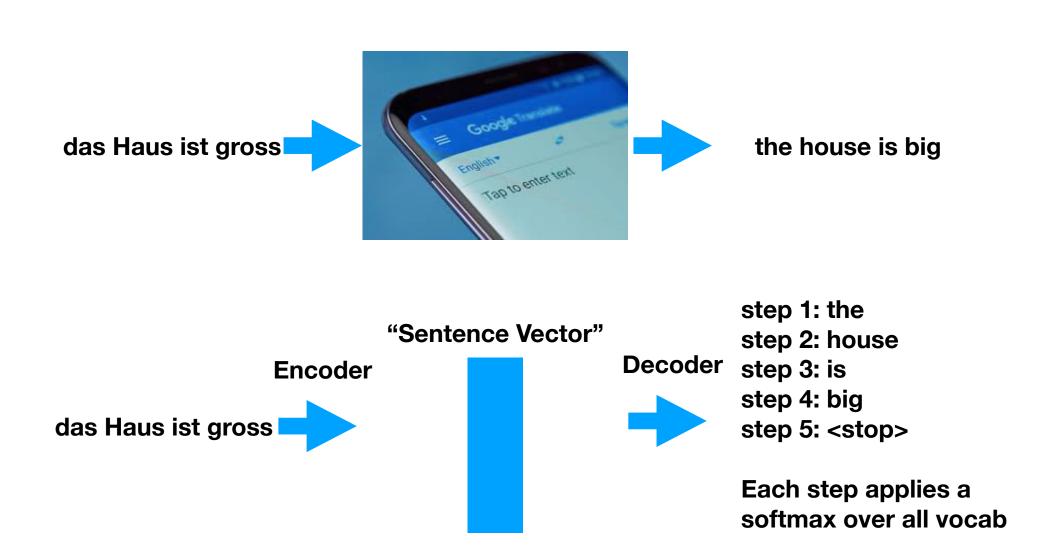
- Problem Setup:
 - Input: source sentence
 - Output: target sentence
 - Given bitext, learn a model that maps source to target
- SMT models the mapping with several probabilistic models (e.g. translation model, language model)
- NMT models the mapping with a single neural network

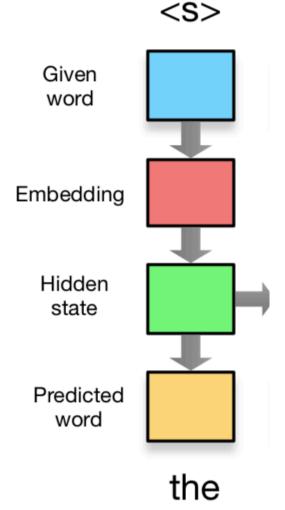
Outline

- 1. Background: Intuitions, SMT
- 2. NMT: Recurrent Model with Attention
- 3. NMT: Transformer Model
- 4. NMT with Large Language Models

Neural sequence-to-sequence models

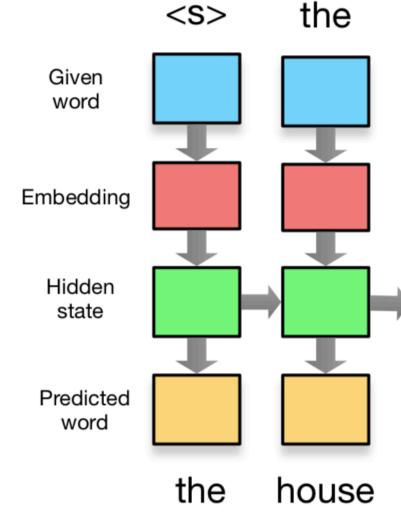
- For sequence input:
 - We need an "encoder" to convert arbitrary length input to some fixed-length hidden representation
 - Without this, may be hard to apply matrix operations
- For sequence output:
 - We need a "decoder" to generate arbitrary length output
 - One method: generate one word at a time, until special <stop> token

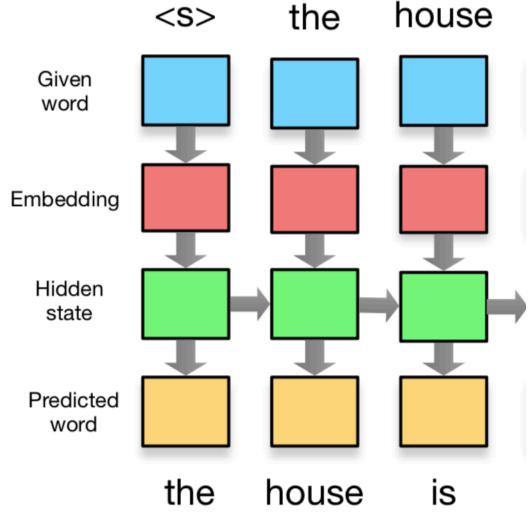


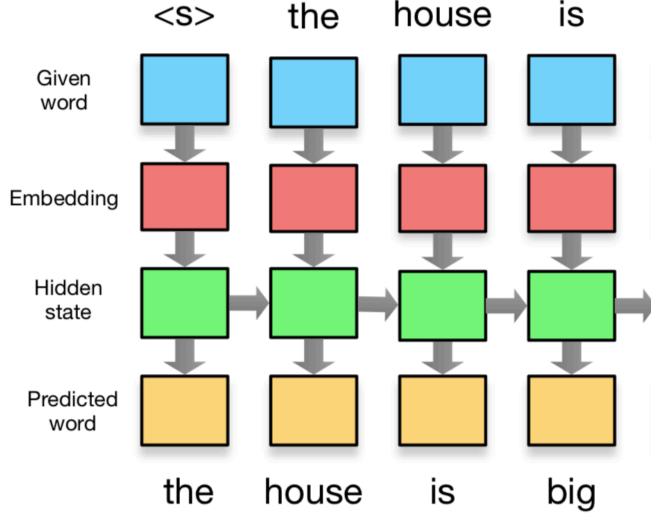


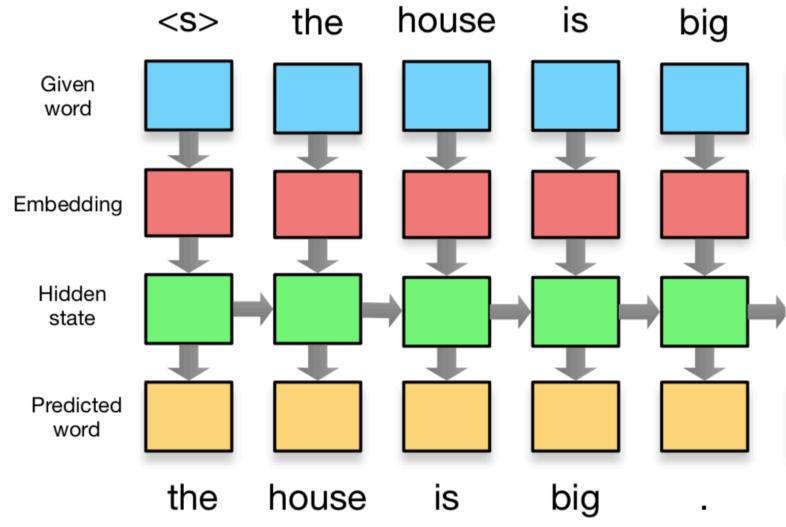
the house is big .

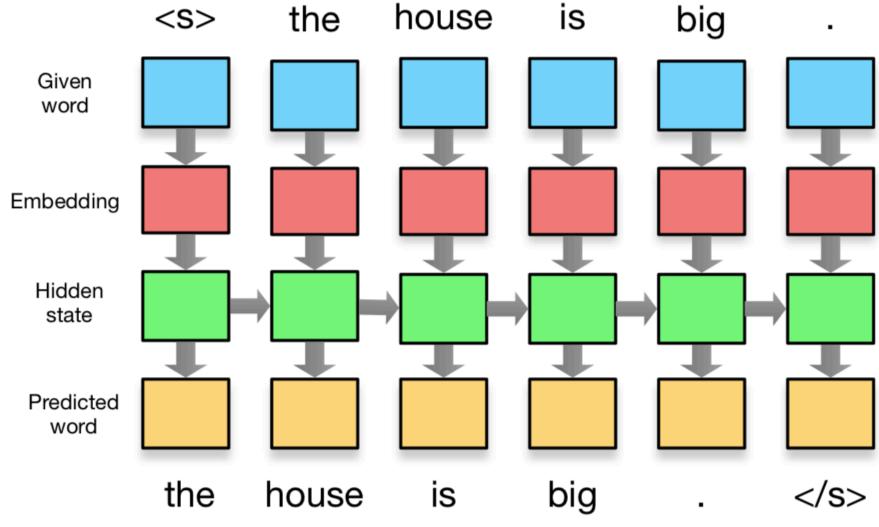
The following animations courtesy of Philipp Koehn: http://mt-class.org/jhu







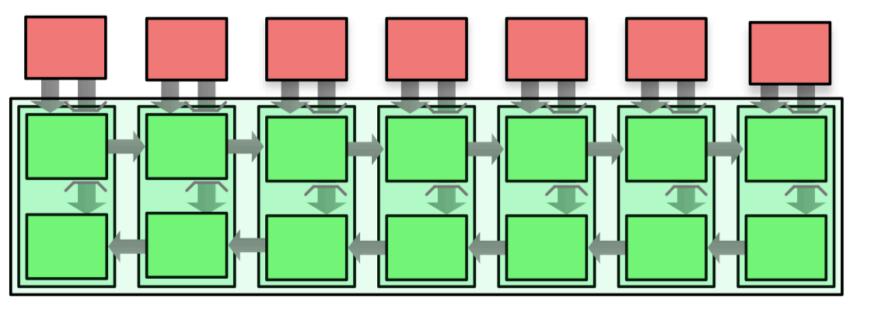




Recurrent models for sequenceto-sequence problems

- We can use these models for both input and output
- For output, there is the constraint of left-to-right generation
- For input, we are provided the whole sentence at once, we can do both left-to-right and right-to-left modeling
- The recurrent units may be based on LSTM, GRU, etc.

Bidirectional Encoder for Input Sequence



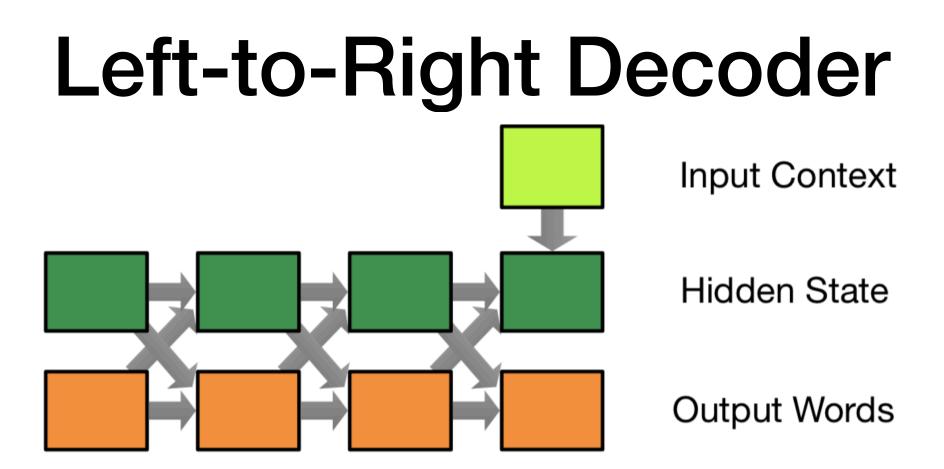
Input Word Embeddings

Left-to-Right Recurrent NN

Right-to-Left Recurrent NN

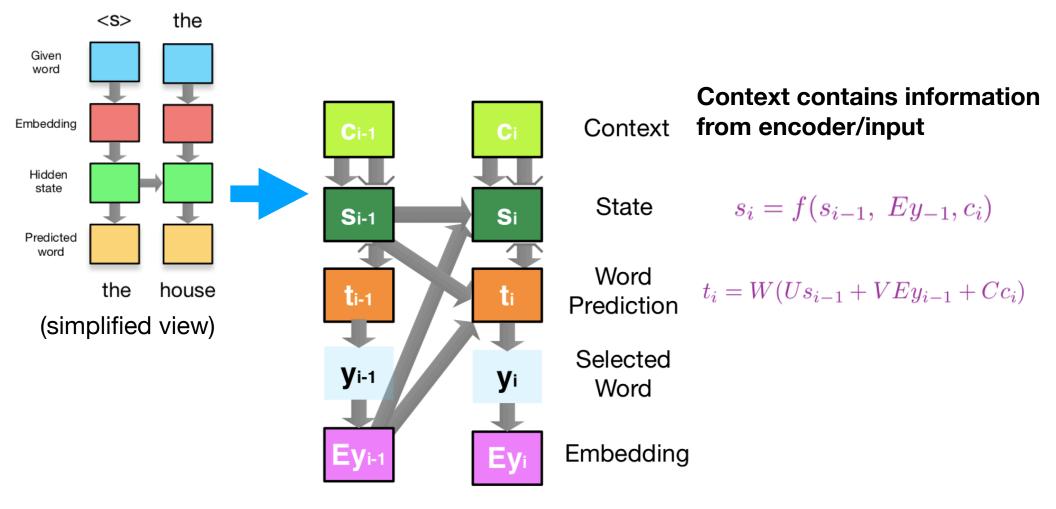
Word embedding: word meaning in isolation Hidden state of each Recurrent Neural Net (RNN): word meaning in this sentence

$$\overleftarrow{h_j} = f(\overleftarrow{h_{j+1}}, \bar{E} \ x_j)$$
$$\overrightarrow{h_j} = f(\overrightarrow{h_{j-1}}, \bar{E} \ x_j)$$



- Input context comes from encoder
- Each output is informed by current hidden state and previous output word
- Hidden state is updated at every step

In detail: each step



What connects the encoder and decoder

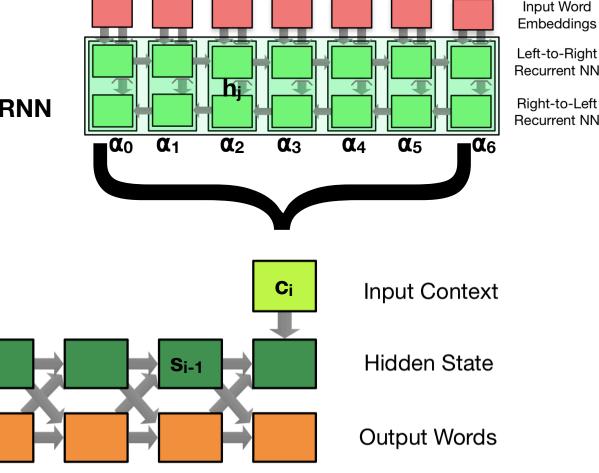
Input context is a fixed-dim vector: weighted average of all L vectors in RNN

How to compute weighting? Attention mechanism:

$$\alpha_{ij} = \frac{\exp(a(s_{i-1}, h_j))}{\sum_k \exp(a(s_{i-1}, h_k))}$$

 $c_i = \sum_j \alpha_{ij} h_j$

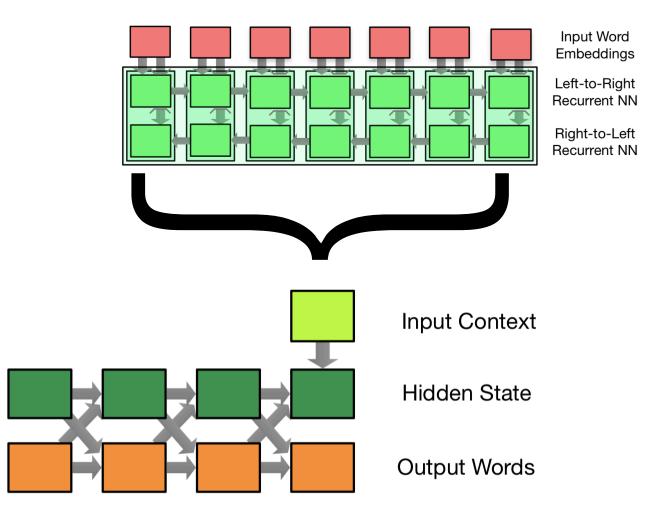
Note this changes at each step i What's paid attention has more influence on next prediction



To wrap up: Recurrent models with attention

1. Encoder takes in arbitrary length input

2. Decoder generates output one word at a time, using current hidden state, input context (from attention), and previous output



Note: we can add layers to make this model "deeper"

Outline

- 1. Background: Intuitions, SMT
- 2. NMT: Recurrent Model with Attention
- 3. NMT: Transformer Model
- 4. NMT with Large Language Models

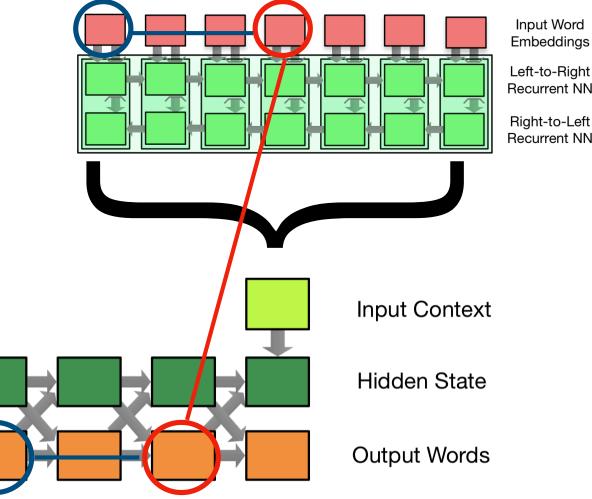
Motivation of Transformer Model

- RNNs are great, but have two demerits:
 - Sequential structure is hard to parallelize, may slow down GPU computation
 - Still has to model some kinds of long-term dependency (though addressed by LSTM/GRU)
- Transformers solve the sequence-to-sequence problem using only attention mechanisms, no RNN

Long-term dependency

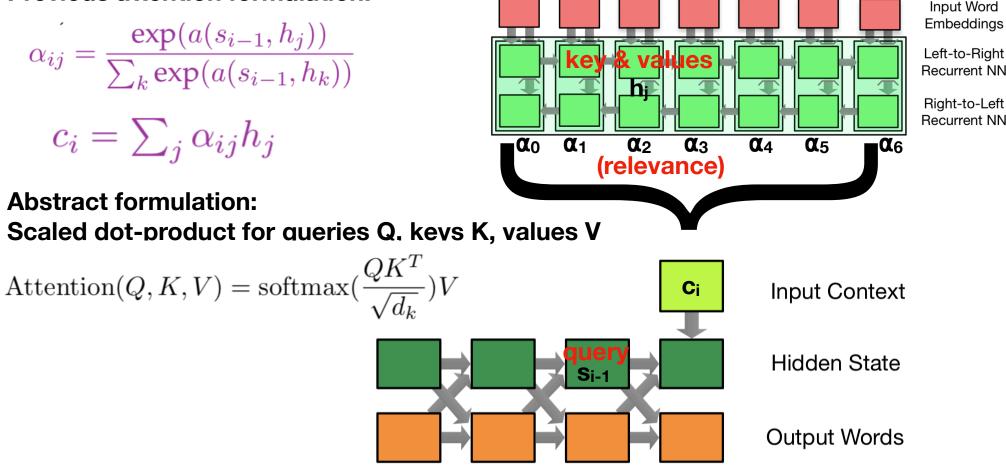
- Dependencies between:
 - Input-output words
 - Two input words
 - Two output words

Attention mechanism "shortens" path between input and output words. What about others?



Attention, more abstractly

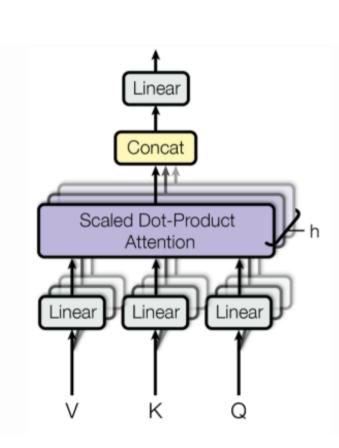
Previous attention formulation:



Multi-head Attention

- For expressiveness, do at scaled dot-product attention multiple times
- Add different linear transform for each key, query, value

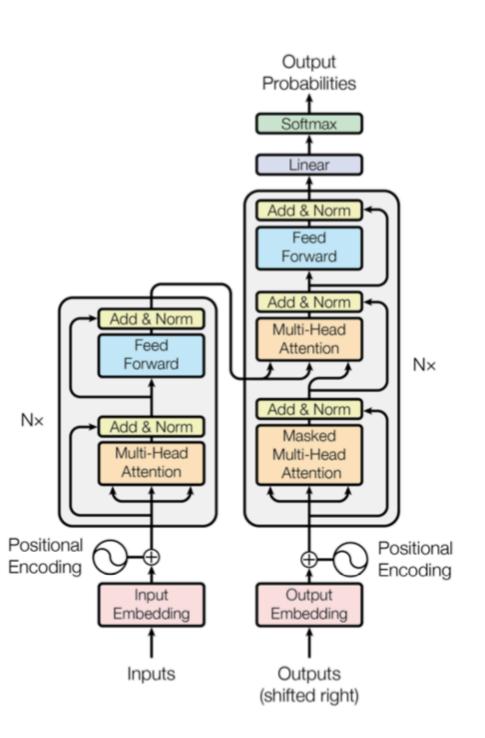
MultiHead(Q, K, V) = Concat(head₁, ..., head_h) W^{O} where head_i = Attention $(QW_{i}^{Q}, KW_{i}^{K}, VW_{i}^{V})$



 $W_i^Q \in \mathbb{R}^{d_{\text{model}} \times d_k}, W_i^K \in \mathbb{R}^{d_{\text{model}} \times d_k}, W_i^V \in \mathbb{R}^{d_{\text{model}} \times d_v} \quad W^O \in \mathbb{R}^{hd_v \times d_{\text{model}}}$

Putting it together

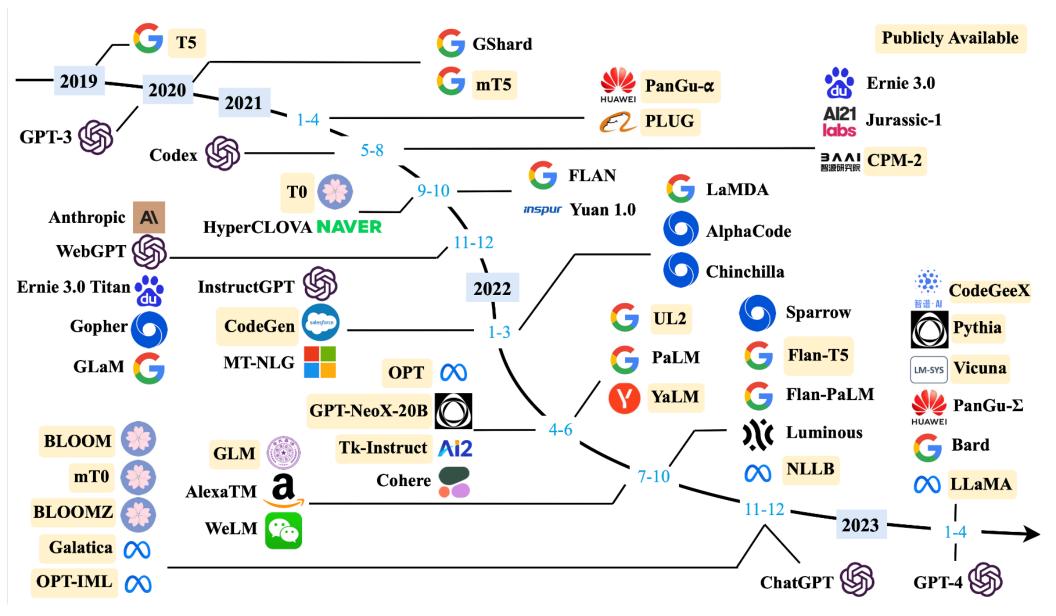
- Multiple (N) layers
- For encoder-decoder attention, Q: previous decoder layer, K and V: output of encoder
- For encoder self-attention, Q/K/V all come from previous encoder layer
- For decoder self-attention, allow each position to attend to all positions up to that position
- Positional encoding for word order



From: https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

Outline

- 1. Background: Intuitions, SMT
- 2. NMT: Recurrent Model with Attention
- 3. NMT: Transformer Model
- 4. NMT with Large Language Models



Zhao, et. al. A Survey of Large Language Models. May 2023. https://arxiv.org/pdf/2303.18223.pdf

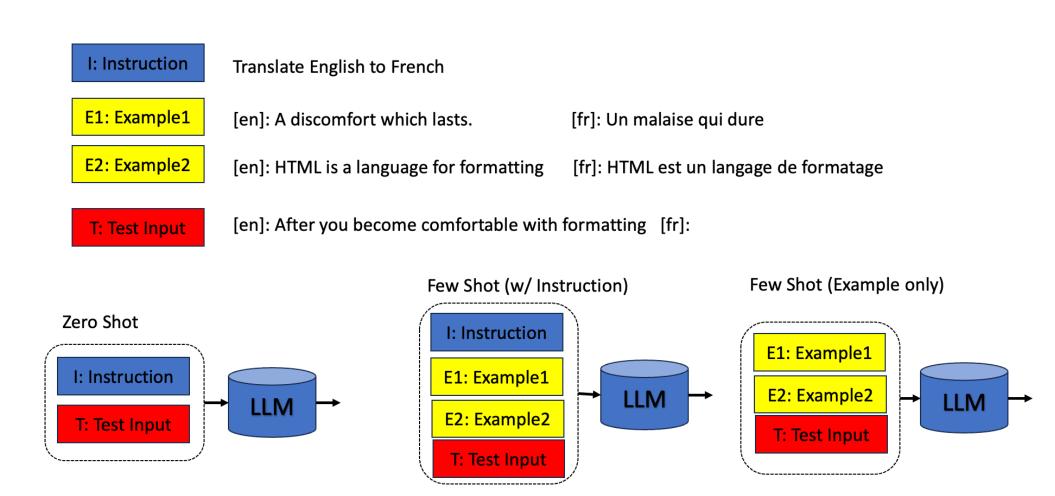
Large Language Models (LLMs) for translation: why & why not

- Pros:
 - One LLM can do many tasks, e.g. translate+summarize
 - Exploits vastly large amounts of data
- Cons
 - Inference cost may be higher than smaller dedicated NMT models
 - Dependence on specific LLMs

Large Language Models (LLMs) for translation: potential?

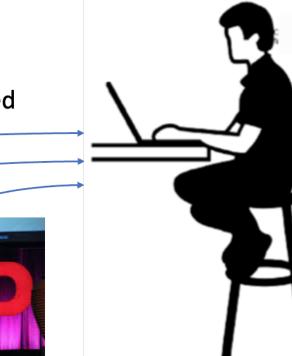
- In-context learning may allow quicker adaptation of translation to new domains and styles?
- Document-level adaptation is possible with LLM's long input context?

In-Context Learning



Document-Level Translation

- Info may be underspecified at the sentence level
- Document is a clear-cut unit
 - Internally coherent, e.g. one sense per discourse
 - Many practical translation tasks are document-based



Human Expert

Translator

Each TED talk is translated as a whole

source: www.ted.com

Summary

- 1. Background
 - Learning translation knowledge from data
- 2. Recurrent Model with Attention
 - Bidirectional RNN encoder, RNN decoder, attention-based context vector tying it together
- 3. Transformer Model
 - Another way to solve sequence problems, without using sequential models
- 4. NMT with Large Language Models
 - Fine-tuning & In-Context Learning are new paradigms

Questions? Comments?

감사합니다 Natick Danke Ευχαριστίες Dalu O