
Language Modeling

David Yarowsky

10/14/2019

Acknowledgements and thanks to:

• Michael Doroshenko
• Alexey Karyakin
• Dan Jurafsky
• Jason Eisner
• Kai-Wei Chang

You use language modeling
every day

Smart Reply

7

Infamous uses of Language Modeling

Language generation

https://pdos.csail.mit.edu/archive/scigen/

https://pdos.csail.mit.edu/archive/scigen/

Traditional channel model applications of LM’s

Application Signal Y

automatic speech recognition acoustic signal

machine translation sequence of words in a foreign language

spelling correction sequence of characters produced by a possibly imperfect typist

The ultimate goal is to determine W from Y

source-channel model

10

Traditional channel model applications of LM’s

The ultimate goal is to determine W from Y

source-channel model

Speech Recognition:

• How do you recognize speech?

• How do you wreck a nice beach?

OCR/Handwriting Recognition:

• Federal farm aid

• Federal form aid

Traditional channel model applications of LM’s
Machine Translation:

Probabilistic Language Models

•The goal: assign a probability to a sentence
• Machine Translation:

• P(high winds tonite) > P(large winds tonite)

• Spelling Correction
• The office is about fifteen minuets from my house

• P(about fifteen minutes from) > P(about fifteen minuets from)

• Speech Recognition
• P(I saw a van) >> P(eyes awe of an)

• + Summarization, question-answering, etc., etc.!!

26

Probabilistic Language Modeling

•Goal: compute the probability of a sentence or sequence
of words:

P(W) = P(w1,w2,w3,w4,w5…wn)

•Related task: probability of an upcoming word:
P(w5|w1,w2,w3,w4)

•A model that computes either of these:
P(W) or P(wn|w1,w2…wn-1) is called a language model.

• Better: the grammar But language model or LM is standard

27

Evaluation and Perplexity

28

Evaluation: How good is our model?

• Does our language model prefer good sentences to bad ones?
• Assign higher probability to “real” or “frequently observed” sentences

• Than “ungrammatical” or “rarely observed” sentences?

• We train parameters of our model on a training set.

• We test the model’s performance on data we haven’t seen.
• A test set is an unseen dataset that is different from our training set, totally

unused.

• An evaluation metric tells us how well our model does on the test set.

29

Extrinsic evaluation of N-gram models

•Best evaluation for comparing models A and B
• Put each model in a task

• spelling corrector, speech recognizer, machine
translation system

• Run the task, get an accuracy for A and for B
• How many misspelled words corrected properly
• How many words translated correctly

• Compare accuracy for A and B

30

Difficulty of extrinsic (in-vivo) evaluation of
N-gram models

•Extrinsic evaluation
• Time-consuming; can take days or weeks

•So instead
• Sometimes use intrinsic evaluation: perplexity
• Bad approximation

• unless the test data looks just like the training data
• So generally only useful in pilot experiments

• But is helpful to think about.

31

Intuition of Perplexity

• How well can we predict the next word?

• Unigrams are terrible at this game. (Why?)

• A better model
• is one which assigns a higher probability to the word that actually occurs

I always order pizza with cheese and ____

The 33rd President of the US was ____

I saw a ____

mushrooms 0.1

pepperoni 0.1

anchovies 0.01

….

fried rice 0.0001

….

and 1e-100

32

Perplexity

Perplexity is the probability of the test
set, normalized by the number of
words:

Chain rule:

For bigrams:

Minimizing perplexity is the same as maximizing probability

The best language model is one that best predicts an unseen test set

• Gives the highest P(sentence)

33

𝑃𝑃 𝑊 = 𝑃 𝑤1𝑤2…𝑤𝑁
−
1
𝑁

=
𝑁 1

𝑃(𝑤1𝑤2…𝑤𝑁)

Example

• How hard is the task of recognizing digits ‘0,1,2,3,4,5,6,7,8,9’
• Perplexity 10

• How hard is recognizing (30,000) names at Microsoft.
• Perplexity = 30,000

• If a system has to recognize
• Operator (25% of the time)

• Sales (25% of the time)

• Technical Support (25% of the time)

• 30,000 names (overall 25% of the time, 1 in 120,000 each)

• Perplexity is 52.64 ≈ 53 – computed via the geometric mean formula

• Perplexity is weighted equivalent branching factor (number of possible children)

34

Perplexity as branching factor

• Let’s suppose a sentence consisting of random digits

• What is the perplexity of this sentence according to a model that
assign P=1/10 to each digit?

35

QUESTION 3

A traffic signal has three colors: green, yellow, and red, which appear
with the following probabilities. Using a unigram model, what is the
perplexity of the sequence (green, yellow, red)?

P(green) = 2/5

P(yellow) = 1/5

P(red) = 2/5

36

𝑃𝑃 𝑔𝑟𝑒𝑒𝑛, 𝑦𝑒𝑙𝑙𝑜𝑤, 𝑟𝑒𝑑 =
2

5
×
1

5
×
2

5

−
1
3

Lower perplexity = better model

•Training 38 million words, test 1.5 million words,
WSJ

N-gram
Order

Unigram Bigram Trigram

Perplexity 962 170 109

37

Generalization and zeros

38

The Shannon Visualization Method

• Choose a random bigram

(<s>, w) according to its probability

• Now choose a random bigram
(w, x) according to its probability

• And so on until we choose </s>

• Then string the words together

<s> I

I want

want to

to eat

eat Chinese

Chinese food

food </s>

I want to eat Chinese food

39

Shakespeare as corpus

•N=884,647 tokens, V=29,066

•Shakespeare produced 300,000 bigram types out
of V2= 844 million possible bigrams.
•So 99.96% of the possible bigrams were never seen

(have zero entries in the table)

•Quadrigrams worse: What's coming out looks
like Shakespeare because it is Shakespeare

41

The Wall Street Journal is not Shakespeare

42

The perils of overfitting

•N-grams only work well for word prediction if the
test corpus looks like the training corpus
• In real life, it often doesn’t
•We need to train robust models that generalize!
•One kind of generalization: Zeros!
•Things that don’t ever occur in the training set
•But occur in the test set

43

Zeros

•Training set:
… denied the allegations
… denied the reports
… denied the claims
… denied the request

P(“offer” | denied the) = 0

• Test set
… denied the offer
… denied the loan

44

Zero probability bigrams

• Bigrams with zero probability
• mean that we will assign 0 probability to the test set!

• And hence we cannot compute perplexity (can’t divide by 0)!

• Zero mitigation
• Various smoothing techniques

45

Basic Smoothing:
Interpolation and Back-off

46

Backoff and Interpolation

• Sometimes it helps to use less context
• Condition on less context for contexts you haven’t learned much about

• Backoff:
• use trigram if you have good evidence,

• otherwise bigram, otherwise unigram

• Interpolation:
• mix unigram, bigram, trigram

• Interpolation works better

47

Linear Interpolation

•Simple interpolation

• Lambdas conditional on context

48

QUESTION 4

Suppose we train unigram, bigram and trigram language models on the
following corpus:

<s> I am Sam </s>

<s> Sam I am </s>

<s> I do not like green eggs and ham </s>

What is P(Sam|I am) if we use linear interpolation with λi=13?

49

𝑃 𝑆𝑎𝑚 𝐼 𝑎𝑚 =
1

3
𝑃 𝑆𝑎𝑚 +

1

3
𝑃 𝑆𝑎𝑚 𝑎𝑚 +

1

3
𝑃 𝑆𝑎𝑚 𝐼 𝑎𝑚 =

1

3
×

2

20
+
1

3
×
1

2
+
1

3
×
1

2

How to set the lambdas?

• Use a held-out corpus

• Choose λs to maximize the probability of held-out data:

• Fix the N-gram probabilities (on the training data)
• Then search for λs that give largest probability to held-out set:

Training Data
Held-Out

Data
Test
Data

logP(w1...wn |M(l1...lk)) = logPM (l1...lk)(wi |wi-1)
i

å
50

Unknown words: open vs closed vocabulary
• If we know all the words in advance

• Vocabulary V is fixed
• Closed vocabulary task

• Often we don’t know this
• Out Of Vocabulary = OOV words
• Open vocabulary task

• Instead: create an unknown word token <UNK>
• Training of <UNK> probabilities

• Create a fixed lexicon L of size V
• At text normalization phase, any training word not in L changed to <UNK>
• Now we train its probabilities like a normal word

• At decoding time
• If text input: Use UNK probabilities for any word not in training

51

Huge web-scale n-grams

• How to deal with, e.g., Google N-gram corpus

• Pruning
• Only store N-grams with count > threshold

• Remove singletons of higher-order n-grams

• Entropy-based pruning

52

Back-off: Smoothing for Web-scale N-grams

• “Stupid backoff” (Brants et al. 2007)
• works well at large scale

•Use MLE or back-off to a lesser order n-gram
•Does not produce probability, but scores

53

S(wi |wi-k+1

i-1) =

count(wi-k+1

i)

count(wi-k+1

i-1)
 if count(wi-k+1

i) > 0

0.4S(wi |wi-k+2

i-1) otherwise

ì

í
ïï

î
ï
ï

S(wi) =
count(wi)

N

Uses of Language Models
• Speech recognition

• “I ate a cherry” is a more likely sentence than “Eye eight
uh Jerry”

• OCR & Handwriting recognition
• More probable sentences are more likely correct readings.

• Machine translation
• More likely sentences are probably better translations.

• Generation
• More likely sentences are probably better NL generations.

• Context sensitive spelling correction
• “Their are problems wit this sentence.”

Completion Prediction
• A language model also supports predicting the

completion of a sentence.
• Please turn off your cell _____

• Your program does not ______

• Predictive text input systems can guess what you
are typing and give choices on how to complete it.

N-Gram Models
• Estimate probability of each word given prior context.

• P(phone | Please turn off your cell)

• Number of parameters required grows exponentially with
the number of words of prior context.

• An N-gram model uses only N−1 words of prior context.
• Unigram: P(phone)

• Bigram: P(phone | cell)

• Trigram: P(phone | your cell)

• The Markov assumption is the presumption that the future
behavior of a dynamical system only depends on its recent
history. In particular, in a kth-order Markov model, the next
state only depends on the k most recent states, therefore
an N-gram model is a (N−1)-order Markov model.

N-Gram Model Formulas

• Word sequences

• Chain rule of probability

• Bigram approximation

• N-gram approximation

n

n www ...11 =

)|()|()...|()|()()(1

1

1

1

1

2

131211

−

=

−

== k
n

k

k

n

n

n wwPwwPwwPwwPwPwP

)|()(1

1

1

1

−

+−

=

=
k

Nk

n

k

k

n wwPwP

)|()(1

1

1 −

=

= k

n

k

k

n wwPwP

Estimating Probabilities

• N-gram conditional probabilities can be estimated from raw text
based on the relative frequency of word sequences.

• To have a consistent probabilistic model, append a unique start (<s>)
and end (</s>) symbol to every sentence and treat these as additional
words.

)(

)(
)|(

1

1
1

−

−
− =

n

nn
nn

wC

wwC
wwP

)(

)(
)|(

1

1

1

11

1 −

+−

−

+−−

+− =
n

Nn

n

n

Nnn

Nnn
wC

wwC
wwP

Bigram:

N-gram:

Smoothing
• Since there are a combinatorial number of possible

word sequences, many rare (but not impossible)
combinations never occur in training, so MLE
incorrectly assigns zero to many parameters (a.k.a.
sparse data).

• If a new combination occurs during testing, it is
given a probability of zero and the entire sequence
gets a probability of zero (i.e. infinite perplexity).

• In practice, parameters are smoothed (a.k.a.
regularized) to reassign some probability mass to
unseen events.
• Adding probability mass to unseen events requires

removing it from seen ones (discounting) in order to
maintain a joint distribution that sums to 1.

Laplace (Add-One) Smoothing
• “Hallucinate” additional training data in which each

possible N-gram occurs exactly once and adjust
estimates accordingly.

where V is the total number of possible (N−1)-grams
(i.e. the vocabulary size for a bigram model).

VwC

wwC
wwP

n

nn
nn

+

+
=

−

−
−

)(

1)(
)|(

1

1
1

VwC

wwC
wwP

n

Nn

n

n

Nnn

Nnn
+

+
=

−

+−

−

+−−

+−
)(

1)(
)|(

1

1

1

11

1

Bigram:

N-gram:

• Tends to reassign too much mass to unseen events,
so can be adjusted to add 0<<1 (normalized by V
instead of V).

Advanced Smoothing

• Many advanced techniques have been developed to improve
smoothing for language models.
• Good-Turing

• Interpolation

• Backoff

• Kneser-Ney

• Class-based (cluster) N-grams

Model Combination

• As N increases, the power (expressiveness) of an N-gram model
increases, but the ability to estimate accurate parameters from sparse
data decreases (i.e. the smoothing problem gets worse).

• A general approach is to combine the results of multiple N-gram
models of increasing complexity (i.e. increasing N).

Interpolation
• Linearly combine estimates of N-gram models of

increasing order.

• Learn proper values for i by training to

(approximately) maximize the likelihood of

an independent development (a.k.a. tuning)

corpus.

)()|()|()|(ˆ
3121,211,2 nnnnnnnnn wPwwPwwwPwwwP  ++= −−−−−

Interpolated Trigram Model:

1=
i

iWhere:

Backoff
• Only use lower-order model when data for higher-

order model is unavailable (i.e. count is zero).

• Recursively back-off to weaker models until data is
available.



 

=
−

+−

−

+−

+−

−

+−−

+−
otherwise)|()(

1)(if)|(*
)|(

1

2

1

1

1

1

11

1 n

Nnnkatz

n

Nn

n

Nn

n

Nnnn

Nnnkatz
wwPw

wCwwP
wwP



Where P* is a discounted probability estimate to reserve

mass for unseen events and ’s are back-off weights (see

text for details).

Practical Issues

• We do everything in the log space
• Avoid underflow

• Adding is faster than multiplying

log 𝑝1 × 𝑝2 = log 𝑝1 + log 𝑝2

• Toolkits
• KenLM: https://kheafield.com/code/kenlm/

• SRILM: http://www.speech.sri.com/projects/srilm

https://kheafield.com/code/kenlm/
http://www.speech.sri.com/projects/srilm

Resources:

• Google n-gram:

https://research.googleblog.com/2006/08/all-our-n-gram-are-belong-
to-you.html

File sizes: approx. 24 GB compressed (gzip'ed) text files

Number of tokens: 1,024,908,267,229

Number of sentences: 95,119,665,584

Number of unigrams: 13,588,391

Number of bigrams: 314,843,401

Number of trigrams: 977,069,902

Number of fourgrams: 1,313,818,354

Number of fivegrams: 1,176,470,663

https://research.googleblog.com/2006/08/all-our-n-gram-are-belong-to-you.html

More resources

• Google n-gram viewer

https://books.google.com/ngrams/

Data:
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

circumvallate 1978 335 91

circumvallate 1979 261 91

https://books.google.com/ngrams/

A Problem for N-Grams:

Long Distance Dependencies

• Many times local context does not provide the
most useful predictive clues, which instead are
provided by long-distance dependencies.
– Syntactic dependencies

• “The man next to the large oak tree near the grocery store on
the corner is tall.”

• “The men next to the large oak tree near the grocery store on
the corner are tall.”

– Semantic dependencies
• “The bird next to the large oak tree near the grocery store on

the corner flies rapidly.”

• “The man next to the large oak tree near the grocery store on
the corner talks rapidly.”

• More complex models of language are needed to
handle such dependencies.

Thank you! Q&A

• SRILM:
• www.speech.sri.com/projects/srilm

• Google N-Gram Release, August 2006, dataset details:
• Over a trillion words
• Over a billion 5-grams (c >= 40)
• Over 13 million unique words (c >= 200)

•Google Books n-gram viewer:
• http://ngrams.googlelabs.com

86

http://www.speech.sri.com/projects/srilm
http://ngrams.googlelabs.com/

Questions?

