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Language Modeling

* Language Modeling is the task of predicting what word comes

next. books
/ laptops
the students opened their —
\\ exams
minds
 More formally: given a sequence of words "), 23 ... «®,

compute the probability distribution of the next word z*+1)
t+1 t 1
P(ztD) £® )
where z{**!) can be any word in the vocabulary V' = {wy, ..., w)y }

* Asystem that does this is called a Language Model.



Language Modeling

* You can also think of a Language Model as a system that
assigns probability to a piece of text.

 For example, if we have some text () ... 2(T), then the
probability of this text (according to the Language Model) is:

PxW,. . 1)) =PaxW) x P(x®| M) x ... x P(xD)| 7D . b))

T
= H Px®W| 201 2)
t=1

\\ V)
Y

This is what our LM provides




You use Language Models every day!

e I'll meet you at the ® >

airport




Go

what is the weather

what is the meaning of life
what is the dark web

what is the xfl

what is the doomsday clock
what is the weather today
what is the keto diet

what is the american dream
what is the speed of light
what is the bill of rights

what is the |

Google Search

You use Language Models every day!

gle

I'm Feeling Lucky

(=



You use language modeling x X O v
every day

vacation plans
S Mad rt Re p |y J a' [F;e[t:LHarbison 5:00 PM

| think I'll be able to take a week of vacation next
month. Leaning towards Kauai.

Do you have your vacation plans set yet? When you
do, can you send them along?

a Reply 4

| just sent I’'m working

No plans yet.
P y them to you. on them.

< O O




Infamous uses of Language Modeling

Language generation

https://pdos.csail.mit.edu/archive/scigen/ Deploying Superblocks and Compilers

Julia and Dan

Abstract

Recent advances in replicated algorithms and rela-
tional symmetries have paved the way for architec-
ture. After years of natural research into erasure cod-
ing, we show the deployment of courseware, which
embodies the key principles of steganography. Loy,
our new system for the exploration of sensor net-
works, 1s the solution to all of these issues.

1 Introduction
Steganographers agree that robust symmetries are an

interesting new topic in the field of cryptography,
and information theorists concur. We view operat-

thesize unstable algorithms, we fulfil
without investigating the evaluation ol

Our contributions are threefold. Fir:
how erasure coding can be applied to
tion of reinforcement learning. We p
algorithm for the deployment of extr
ming (Loy), which we use to prove tha
and operating systems [19, 7, 14] can.
fill this goal. we examine how replic
be applied to the deployment of linkec

The rest of this paper is organized a
marily, we motivate the need for fibe
We demonstrate the synthesis of the Tt
Finally, we conclude.


https://pdos.csail.mit.edu/archive/scigen/

Why should we care about Language Modeling?

Language Modeling is a benchmark task that helps us
measure our progress on understanding language

Language Modeling is a subcomponent of many NLP tasks,
especially those involving generating text or
estimating the probability of text:

* Predictive typing

* Speech recognition

* Handwriting recognition

* Spelling/grammar correction
* Authorship identification

* Machine translation

* Summarization

* Dialogue

* etc.



Traditional channel model applications of LM’s

Application Signal Y

automatic speech recognition acoustic signal
machine translation sequence of words in a foreign language
spelling correction sequence of characters produced by a possibly imperfect typist

source-channel model

Source W _ Y
Language ’ C}l&‘gﬁg?l

Model

Pr (W) x Pr(Y | W)= Pr(W,)Y)

The ultimate goal is to determine W from Y

10



Traditional channel model applications of LM’s

Speech Recognition:

* How do you recognize speech?

* How do you wreck a nice beach?
OCR/Handwriting Recognition:

 Federal farm aid
 Federal form aid

source-channel model

Source W _ Y
Language - cﬁ‘{;ﬁgiﬂl

Model

Pr(W) X Pr(Y| W)= Pr(W)Y)

The ultimate goal is to determine W from Y



Traditional channel model applications of LM’s

Machine Translation:
e (Choose randomly among outputs:

— Visitant which came into the place where it will be Japanese has
admired that there was Mount Fuji.

* Top 10 outputs according to bigram probabilities:
Visitors who came in Japan admire Mount Fuji.
Visitors who came in Japan admires Mount Fuji.
Visitors who arrived in Japan admire Mount Fuji.
Visitors who arrived in Japan admires Mount Fuji.
Visitors who came to Japan admire Mount Fuji.

A visitor who came in Japan admire Mount Fuji.

The visitor who came in Japan admire Mount Fuji.
Visitors who came in Japan admire Mount Fuji.

The visitor who came in Japan admires Mount Fuji.
Mount Fuji 1s admired by a visitor who came in Japan.




Automatic Yahoo classification, etc.

Similar to language ID ...

0 In the beginning God created . ..

0 The history of all hitherto existing
society 1s the history of class struggles. ...

Matt’s Communist Homepage. Capitalism 1s
unfair and has been ruining the lives of millions of people
around the world. The profits from the workers’ labor ...

And they have beat their swords to
ploughshares, And their spears to pruning-hooks. Nation
doth not lift up sword unto nation, neither do they learn
war any more. ...




Some History

e Chomsky (in Syntactic Structures (1957)):

Second, the notion ‘grammatical” cannot be 1dentified with
“meaningful” or ‘S1gnificant” 1n any semantic sense. Sentences
(1) and (2) are equally nonsensical, but any speaker of English
will recognize that only the former 1s grammatical.

(1) Colorless green 1deas sleep furiously.
(2) Furiously sleep 1deas green colorless.

... Third, the notion ‘grammatical in English” cannot be
identified in any way with the notion ‘high order of statistical
approximation to English” It 1s fair to assume that neither
sentence (1) nor (2) (nor indeed any part of these sentences) has
ever occurred in an English discourse. Hence. in any statistical
model for grammaticalness, these sentences will be ruled out
on 1dentical grounds as equally ‘remote’ from English. Yet (1),
though nonsensical, 1s grammatical, while (2) 1s not. . ..

(my emphasis)



n-gram Language Models

the students opened their

* Question: How to learn a Language Model?

* Answer (pre- Deep Learning): learn a n-gram Language Model!

* Definition: A n-gram is a chunk of n consecutive words.

* unigrams: “the”, “students”, “opened”, “their”

* bigrams: “the students”, “students opened”, “opened their”
o trigrams: “the students opened”, “students opened their”

* 4-grams: “the students opened their”

 |dea: Collect statistics about how frequent different n-grams
are, and use these to predict next word.




n-gram Language Models

*  First we make a simplifying assumption: z(t+1) depends only on the
preceding n-1 words.

n-1 words
A
I \

P(:B(HU |:r_:(t), .. ,iB(l)) = P(a:(Hl) \m(t), . ,:c(t_n+2)) (assumption)

prob of a n-gram \.P(m(t_i_l)’ :I:(t), L w(t_n+2))

(definition of
o P(x(t), ... x(t—n+2)) conditional prob)

prob of a (n-1)-gram

* Question: How do we get these n-gram and (n-1)-gram probabilities?

* Answer: By counting them in some large corpus of text!

Count(m(t—'_l)n m(t)a # 8 3 7w(t—n—|—2)) (statistical
Count(m(t), o 7gg(t—?’H-?)) approximation)

—~




n-gram Language Models: Example

Suppose we are learning a 4-gram Language Model.

S students opened therr

discard

condltlon on this

count (students opened their w)

P(w|students opened their) =
(w] P ) count (students opened their)

For example, suppose that in the corpus:

» “students opened their” occurred 1000 times

 “students opened their books” occurred 400 times

» = P(books | students opened their) =0.4 Should we have
>~ discarded the

« “students opened their exams” occurred 100 times B B
proctor” context?

« > P(exams | students opened their) = 0.1



Sparsity Problems with n-gram Language Models

Sparsity Problem 1

Problem: What if “students
opened their w” never
occurred in data? Then w
has probability 0!

(Partial) Solution: Add small §
to the count foreveryw € V.
This is called smoothing.

A 4

count(students opened their w)
count(students opened their)

P(w|students opened their) =

Sparsity Problem 2

Problem: What if “students
opened their” never occurred in
data? Then we can’t calculate
probability for any w!

(Partial) Solution: Just condition
on “opened their” instead.
This is called backoff.

A 4

Note: Increasing n makes sparsity problems worse.
Typically we can’t have n bigger than 5.




Storage Problems with n-gram Language Models

Storage: Need to store count for
all n-grams you saw in the corpus.

count(students opened their w)

P(w|students opened their) =
(w] P ) count(students opened their)

Increasing n or increasing corpus
increases model size!




n-gram Language Models in practice

* You can build a simple trigram Language Model over a
1.7 million word corpus (Reuters) in a few seconds on your laptop*

\ Business and financial news

today the
get probability
distribution
company | Sparsity problem:
bank not much granularity
price in the probability
italian distribution
emirate

Otherw]se’ seems reasonablel * Try for yourself: hitps://nipforhackers.io/language-models/




Generating text with a n-gram Language Model

* You can also use a Language Model to generate text.

today the
\ J

Y
condition on this

get probability
distribution

company 0.153
bank 0.153
Iprice 0.077
italian 0.039
emirate 0.039

|5amp|e




Generating text with a n-gram Language Model

* You can also use a Language Model to generate text.

today the price
\ J

Y
condition on this

get probability
distribution

||0'F 0.308 Isample

for 0.050
it 0.046
to 0.046

is 0.031




Generating text with a n-gram Language Model

* You can also use a Language Model to generate text.

today the price of
H_J

condition on this

get probability

distribution
the 0.072
18 0.043
oil 0.043
its 0.036
Igold 0.018 Isample




Generating text with a n-gram Language Model

* You can also use a Language Model to generate text.

today the price of gold




Generating text with a n-gram Language Model

* You can also use a Language Model to generate text.

today the price of gold per ton, while production of shoe
lasts and shoe industry , the bank intervened just after it
considered and rejected an imf demand to rebuild depleted
european stocks , sept 30 end primary 76 cts a share .

Surprisingly grammatical!

...but incoherent. We need to consider more than
three words at a time if we want to model language well.

But increasing n worsens sparsity problem,
and increases model size...



Probabilistic Language Models

* The goal: assign a probability to a sentence
* Machine Translation:
* P(high winds tonite) > P(large winds tonite)
* Spelling Correction

* The office is about fifteen minuets from my house
* P(about fifteen minutes from) > P(about fifteen minuets from)

* Speech Recognition
* P(I saw a van) >> P(eyes awe of an)

* + Summarization, question-answering, etc., etc.!!



Probabilistic Language Modeling

* Goal: compute the probability of a sentence or sequence
of words:

P(W) = P(w,,W,,W3,W,,Wc...W,)
* Related task: probability of an upcoming word:
P(we |wy,wW,,W3,wW,)
* A model that computes either of these:
P(W) or P(w,|w,W,..w,_,) Is called a language model.
e Better: the grammar  But language model or LM is standard



Evaluation and Perplexity



Evaluation: How good is our model?

* Does our language model prefer good sentences to bad ones?
* Assign higher probability to “real” or “frequently observed” sentences

* Than “ungrammatical” or “rarely observed” sentences?

* We train parameters of our model on a training set.

* We test the model’s performance on data we haven’t seen.

* Atest setis an unseen dataset that is different from our training set, totally
unused.

 An evaluation metric tells us how well our model does on the test set.



Extrinsic evaluation of N-gram models

* Best evaluation for comparing models A and B

e Put each model in a task

* spelling corrector, speech recognizer, machine
translation system

* Run the task, get an accuracy for A and for B
* How many misspelled words corrected properly
* How many words translated correctly
 Compare accuracy for Aand B



Difficulty of extrinsic (in-vivo) evaluation of
N-gram models

* Extrinsic evaluation
* Time-consuming; can take days or weeks

*So instead
e Sometimes use intrinsic evaluation: perplexity
* Bad approximation
* unless the test data looks just like the training data
* So generally only useful in pilot experiments
* But is helpful to think about.



Intuition of Perplexity

. h 0.1
» How well can we predict the next word? [ M>700MS

pepperoni 0.1
| always order pizza with cheese and

anchovies 0.01
The 33 President of the US was

| saw a fried rice 0.0001

* Unigrams are terrible at this game. (Why?)

A better model \. and 1e-100

* isone which assigns a higher probability to the word that actually occurs

32



Perplexity

The best language model is one that best predicts an unseen test set

 Gives the highest P(sentence) |
PP(W) = P(wyw, ...wy) N

Perplexity is the probability of the test

set, normalized by the number of N 1
words: B \ P(wiw, ...wy)
Chain rule: IR 1
PPW) = J E P(wilwr...wi—1)
For bigrams: I
N
PP(W) = JHP (wilwi—1)
Minimizing perplexity is the same as maximizing probablllty i=1

33



Example

How hard is the task of recognizing digits ‘0,1,2,3,4,5,6,7,8,9’
e Perplexity 10
How hard is recognizing (30,000) names at Microsoft.
* Perplexity = 30,000
If a system has to recognize
e Operator (25% of the time)
e Sales (25% of the time)
e Technical Support (25% of the time)
e 30,000 names (overall 25% of the time, 1 in 120,000 each)
e Perplexity is 52.64 = 53 — computed via the geometric mean formula

Perplexity is weighted equivalent branching factor (number of possible children)



Perplexity as branching factor

* Let’s suppose a sentence consisting of random digits

* What is the perplexity of this sentence according to a model that
assign P=1/10 to each digit?

PP(W) = Plﬁi-‘lli-‘j...lt‘gg]_?l?

1N
— —_— - N

(]Dj

1—1
10

= 10



QUESTION 3

A traffic signal has three colors: green, yellow, and red, which appear
with the following probabilities. Using a unigram model, what is the
perplexity of the sequence (green, yellow, red)?

P(green) = 2/5
P(yellow) = 1/5
P(red) = 2/5

1
2 1 2\ 3
PP(green, yellow,red) = = X = X =



Lower perplexity = better model

* Training 38 million words, test 1.5 million words,
WS

N-gram Bigram Trigram
Order

Perplexity 962



Generalization and zeros



The Shannon Visualization Method

e Choose a random bigram

. _ N <s> 1
(<s>, w) according to its probability I want
* Now choose'a rano!om bigrarp' want to
(w, x) according to its probability o eat
* And so on until we choose </s> eat Chinese
* Then string the words together Chinese food

food </s>
I want to eat Chinese food



N-gram approximations to Shakespeare

Unigram
To him swallowed confess hear both. Which. Of save on trail for are ay device and rote life have
Every enter now severally so, let
Hill he late speaks; or! a more to leg less first you enter
Are where exeunt and sighs have rise excellency took of.. Sleep knave we. near; vile like
Bigram
What means, sir. I confess she? then all sorts, he is trim, captain.
Why dost stand forth thy canopy, forsooth; he 1s this palpable hit the King Henry. Live king. Follow.
What we, hath got so she that I rest and sent to scold and nature bankrupt, nor the first gentleman?
Trigram
Sweet prince, Falstaff shall die. Harry of Monmouth’s grave.
This shall forbid it should be branded, if renown made it empty.
Indeed the duke; and had a very good friend.
Fly, and will rid me these news of price. Therefore the sadness of parting, as they say, 'tis done.
Quadrigram
King Henry.What! I will go seek the traitor Gloucester. Exeunt some of the watch. A great banquet serv’'d in;
Will you not tell me who I am?
It cannot be but so.
Indeed the short and the long. Marry, “tis a noble Lepidus.




Shakespeare as corpus

*N=884,647 tokens, V=29,066

*Shakespeare produced 300,000 bigram types out
of V2= 844 million possible bigrams.

* S0 99.96% of the possible bigrams were never seen
(have zero entries in the table)

*Quadrigrams worse: What's coming out looks
like Shakespeare because it is Shakespeare



The Wall Street Journal is not Shakespeare

Unigram
Months the my and i1ssue of year foreign new exchange’s september were recession e€x-
change new endorsed a acquire to six executives

Bigram
Last December through the way to preserve the Hudson corporation N. B. E. C. Taylor
would seem to complete the major central planners one point five percent of U. S. E. has
already old M. X. corporation of living on information such as more frequently fishing to

keep her
Trigram

They also point to ninety nine point six billion dollars from two hundred four oh six three
percent of the rates of interest stores as Mexico and Brazil on market conditions

42



The perils of overfitting

* N-grams only work well for word prediction if the
test corpus looks like the training corpus

*|n real life, it often doesn’t
* We need to train robust models that generalize!
* One kind of generalization: Zeros!
* Things that don’t ever occur in the training set
* But occur in the test set



Zeros

*Training set: e Test set
.. denied the allegations  denied the offer
... denied the reports _denied the loan

... denied the claims
... denied the request

P(“offer” | denied the) =0



/ero probability bigrams

* Bigrams with zero probability
* mean that we will assign O probability to the test set!

* And hence we cannot compute perplexity (can’t divide by 0)!

* Zero mitigation
* Various smoothing techniques



Basic Smoothing:
Interpolation and Back-off



Backoff and Interpolation

* Sometimes it helps to use less context
* Condition on less context for contexts you haven’t learned much about

* Backoff:

* use trigram if you have good evidence,
e otherwise bigram, otherwise unigram

* Interpolation:
* mix unigram, bigram, trigram

* Interpolation works better



Linear Interpolation

° Slmple InterpOIatIOn P(H;N‘H;H—lu}ﬁ—Z) — llp(wn‘WH—IWN—Z)
by St
+A3P(wy,)

e Lambdas conditional on context
P(H’?H‘H}H—EH’:H—I) = M (H;; é)P(W}?‘1”"‘1'3—2””;?—1)
+A2 ( ;; ’%)P(H;H|H’?H—1)
+A3(WHP(wy)



QUESTION 4

Suppose we train unigram, bigram and trigram language models on the
following corpus:

<s>|am Sam </s>

<s>Sam | am </s>

<s> | do not like green eggs and ham </s>

What is P(Sam |l am) if we use linear interpolation with Ai=13?

1 1 1
P(Sam|Il am) = §P(Sam) + §P(Sam|am) + §P(Sam|1 am) =

1><2+1><1+1><1
3 20 3 2 3 2



How to set the l[ambdas?

Held-Out Test
Data Data

* Choose As to maximize the probability of held-out data:
* Fix the N-gram probabilities (on the training data)
* Then search for As that give largest probability to held-out set:

log P(wy...w, | M( k... 1)) = Q10g P,y ;1\ (W; | W,y)

* Use a held-out corpus

50



Unknown words: open vs closed vocabulary

* |f we know all the words in advance
* Vocabulary V is fixed
* Closed vocabulary task

e Often we don’t know this
* Out Of Vocabulary = OOV words
* Open vocabulary task

* |Instead: create an unknown word token <UNK>
* Training of <UNK> probabilities
* Create a fixed lexicon L of size V
e At text normalization phase, any training word not in L changed to <UNK>
* Now we train its probabilities like a normal word
* At decoding time
* If text input: Use UNK probabilities for any word not in training



Huge web-scale n-grams

* How to deal with, e.g., Google N-gram corpus

* Pruning
* Only store N-grams with count > threshold
* Remove singletons of higher-order n-grams
* Entropy-based pruning



Back-off: Smoothing for Web-scale N-grams

 “Stupid backoff” (Brants et al. 2007)
e works well at large scale

* Use MLE or back-off to a lesser order n-gram
* Does not produce probability, but scores

I :

T CoUNt(Wi.in) ¢ count(w'_,,)>0
S(W | Wz k+1) = _I_ Count(wz k+l)

'IT' 0.4S(w, | W=, otherwise

count(w,)
N

S(w;) =



Uses of Language Models

* Speech recognition

* “| ate a cherry” is a more likely sentence than “Eye eight
uh Jerry”

* OCR & Handwriting recognition
* More probable sentences are more likely correct readings.

* Machine translation
* More likely sentences are probably better translations.

* Generation
* More likely sentences are probably better NL generations.

* Context sensitive spelling correction
* “Their are problems wit this sentence.”



Completion Prediction

* A language model also supports predicting the
completion of a sentence.

e Please turn off your cell

* Your program does not

* Predictive text input systems can guess what you
are typing and give choices on how to complete it.



N-Gram Models

e Estimate probability of each word given prior context.
* P(phone | Please turn off your cell)

 Number of parameters required grows exponentially with
the number of words of prior context.

* An N-gram model uses only N—1 words of prior context.
* Unigram: P(phone)
e Bigram: P(phone | cell)
e Trigram: P(phone | your cell)

 The Markov assumption is the presumption that the future
behavior of a dynamical system only depends on its recent
history. In particular, in a kth-order Markov model, the next
state only depends on the k most recent states, therefore
an N-gram model is a (N—1)-order Markov model.



N-Gram Model Formulas
* Word SEQUENGHS _ vy w

* Chain rule of probability
P(W) = P(wW,)P(w, | w,)P(w | wy)..P(w, [w™) = HP(Wk wy ™)

* Bigram apprOX|mat|on
P(Wln) = H P(Wk | Wk—l)
k=1

* N-gram approximation

P(w) = [ P(w, [ Wy
k=1



Estimating Probabilities

* N-gram conditional probabilities can be estimated from raw text
based on the relative frequency of word sequences.

: C(w_,w)
: P(w |w )= L1
Blgram ( n | n—1) C(W _1)
_ C(wyyaW,)
_ - P W W N+1
N-gram: (W, [ W0 1 cow

* To have a consistent probabilistic model, append a unique start (<s>)
and end (</s>) symbol to every sentence and treat these as additional
words.



Smoothing

* Since there are a combinatorial number of possible
word sequences, many rare (but not impossible)
combinations never occur in training, so MLE
incorrectly assigns zero to many parameters (a.k.a.
sparse data).

* If a new combination occurs during testing, it is
given a probability of zero and the entire sequence
gets a probability of zero (i.e. infinite perplexity).

* In practice, parameters are smoothed (a.k.a.
regularized) to reassign some probability mass to
unseen events.

* Adding probability mass to unseen events requires
removing it from seen ones (discounting) in order to
maintain a joint distribution that sums to 1.



Laplace (Add-One) Smoothing

e “Hallucinate” additional training data in which each
possible N-gram occurs exactly once and adjust
estimates accordingly.

C:(Wn—lwn) +1
C(w_,)+V

CC(Wiy W) +1

Bigram: P(w,|w, )=

N-gram: P(w, w7, Ry
where V is the total number of poss%rlé“*(lp\l 1)-grams
(i.e. the vocabulary size for a bigram model).

 Tends to reassign too much mass to unseen events,
so can be adjusted to add 0<6<1 (normalized by oV
Instead of V).



Advanced Smoothing

* Many advanced techniques have been developed to improve
smoothing for language models.

* Good-Turing

Interpolation

Backoff

* Kneser-Ney

Class-based (cluster) N-grams



Model Combination

* As N increases, the power (expressiveness) of an N-gram model
increases, but the ability to estimate accurate parameters from sparse
data decreases (i.e. the smoothing problem gets worse).

* A general approach is to combine the results of multiple N-gram
models of increasing complexity (i.e. increasing N).



Interpolation

* Linearly combine estimates of N-gram models of
increasing order.

Interpolated Trigram Model:
P(Wn | Wn—Z,Wn—l) — ﬂlp(wn | Wn—Z,Wn—l) + ﬂ“ZP(Wn | Wn—l) + )2’3P(Wn)
Where: 221 =1

» Learn proper values for A by training to
(approximately) maximize the likelihood of

an independent development (a.k.a. tuning)
Corpus.



Backoff

* Only use lower-order model when data for higher-
order model is unavailable (i.e. count is zero).

* Recursively back-off to weaker models until data is
available.

P*(W |W —N+1 If C(W:—N+l)>1

( n— N+1) katz(W |W |\|+2) OtherWiSE

katz(W |W -N+1 _{

Where P* Is a discounted probability estimate to reserve
mass for unseen events and a.’s are back-off weights (see
text for detalils).



Practical Issues

* We do everything in the log space
* Avoid underflow
* Adding is faster than multiplying

log(py X py) = log(py) + log(pz)

* Toolkits
e KenLM: https://kheafield.com/code/kenlm/
* SRILM: http://www.speech.sri.com/projects/srilm



https://kheafield.com/code/kenlm/
http://www.speech.sri.com/projects/srilm

How to build a neural Language Model?

* Recall the Language Modeling task:
* Input: sequence of words =V, 2, ... 2®
» Output: prob dist of the next word P(z*+V)| 2 . . &)

e How about a window-based neural model?
* We saw this applied to Named Entity Recognition in Lecture 3:

LOCATION

lu

(e00000000000 |

|w
(0000 0000 0000 0000 0000

] f I f f

museums in Paris are amazing




A fixed-window neural Language Model

S — e — A — e p—fes the students  opened their
\

J

Y

discard fixed window



A fixed-window neural Language Model

output distribution

4§ = softmax(Uh + by) € RIV/

hidden layer
h = f(WB -+ bl)

concatenated word embeddings
e — [e(l);e(i’) 6(3);8(4)]

?

words / one-hot vectors
2D 2 23 @

books
laptops
A ZC;O
U
(e00000000000|
N

(0000 0000 0000 0000]

LT

the students  opened their
(1) 2(2) 2(3) (%)



A fixed-window neural Language Model

Improvements over n-gram LM: books lontons

* No sparsity problem l pip

* Don’t need to store all observed
n-grams - N T ____l_

Remaining problems: ; 1 e

* Fixed window is too small U

* Enlarging window enlarges W

* Window can never be large [............]
enough! A

e (D and 22 are multiplied by W
completely different weights in W

No symmetry in how the inputs are [OOOO 0000 0000 OOOO]

processed.
We need a neural I ] )[ I

architecture that can the  students opened  their
process any length input ) x(?) 23) 2@




g = P(z)|the students opened their)

A RNN Language Model books

laptops

output distribution
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Note: this input sequence could be much /

23 longer, but this slide doesn’t have space!




A RNN Language Model

RNN Advantages:

* Can process any length
input

» Computation for step t
can (in theory) use
information from many
steps back

* Model size doesn’t
increase for longer input

* Same weights applied on
every timestep, so there is
symmetry in how inputs
are processed.

RNN Disadvantages: )

* Recurrent computation is
slow

* |n practice, difficult to
access information from

many steps back
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Generating text with a RNN Language Model

 Let’s have some fun!

* You can train a RNN-LM on any kind of text, then generate text
in that style. iy s

 RNN-LM trained on Obama speeches:

The United States will step up to the cost of a new challenges of the American
people that will share the fact that we created the problem. They were attacked
and so that they have to say that all the task of the final days of war that I will not
be able to get this done.

Source: https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2eal




Generating text with a RNN Language Model

e Let’s have some fun!

* You can train a RNN-LM on any kind of text, then generate text
in that style.

 RNN-LM trained on Harry Potter:

“Sorry,” Harry shouted, panicking—“T’ll leave those brooms in London, are
they?”

“No idea,” said Nearly Headless Nick, casting low close by Cedric, carrying the
last bit of treacle Charms, from Harry’s shoulder, and to answer him the
common room perched upon it, four arms held a shining knob from when the

spider hadn’t felt it seemed. He reached the teams too.

Source: https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6




Generating text with a RNN Language Model

e Let’s have some fun!

* You can train a RNN-LM on any kind of text, then generate text
in that style.

 RNN-LM trained on recipes:

Title: CHOCOLATE RANCH BARBECUE
Categories: Game, Casseroles, Cookies, Cookies

Yield: 6 Servings

2 tb Parmesan cheese —-- chopped
1 ¢ Coconut milk
3 Eggs, beaten

Place each pasta over layers of lumps. Shape mixture into the moderate oven and simmer
until firm. Serve hot in bodied fresh, mustard, orange and cheese.

Combine the cheese and salt together the dough in a large skillet; add the ingredients
and stir in the chocolate and pepper.
Source: https://gist.github.com/nylki/1lefbaa36635956d35bcc




Generating text with a RNN Language Model

e Let’s have some fun!

* You can train a RNN-LM on any kind of text, then generate text
in that style.

 RNN-LM trained on paint color names:

_ Ghasty Pink 231 137 165 Sand Dan 201 172 143
B power Gray 151 124 112 B Grade Bat 48 94 83
Navel Tan 199 173 140 " Light Of Blast 175 150 147
Bock Coe White 221 215 236 B Grass Bat 176 99 108
Horble Gray 178 181 196 Sindis Poop 204 205 194
I Homestar Brown 133 104 85 Dope 219 209 179
I snader Brown 144 106 74 B Testing 156 101 106
Golder Craam 237 217 177 " Stoner Blue 152 165 159
Hurky White 232 223 215 Burble Simp 226 181 132
Burf Pink 223 173 179 .~ Stanky Bean 197 162 171
Rose Hork 230 215 198 " Turdly 190 164 116

This is an example of a character-level RNN-LM (predicts what character comes next)

40 Source: http://aiweirdness.com/post/160776374467/new-paint-colors-invented-by-neural-network




Evaluating Language Models

* The standard evaluation metric for Language Models is perplexity.

T 1/T
, 1
perplexity = | (PLM(m(t+1)| x® ... a:(l))) " Normalized by
t=1 ’ ’ number of words

N J
Y

Inverse probability of corpus, according to Language Model

* This is equal to the exponential of the cross-entropy loss J(0):

1 1/T | T
— H (g(t) ) = exp (T Z — log ggtt)+1) = exp(J(0))

t=1 t=1

Lower perplexity is better!




RNNs have greatly improved perplexity

Model Perplexity
n-gram mode| ——| Interpolated Kneser-Ney 5-gram (Chelba et al., 2013) 67.6
RNN-1024 + MaxeEnt 9-gram (Chelba et al., 2013) 1.3
RNN-2048 + BlackOut sampling (Ji et al., 2015) 68.3
' Sparse Non-negative Matrix factorization (Shazeer et 52.9
Increasingly al., 2015)
complex RNNs LSTM-2048 (Jozefowicz et al., 2016) 43.7
2-layer LSTM-8192 (Jozefowicz et al., 2016) 30
Ours small (LSTM-2048) 43.9
L | ours large (2-layer LSTM-2048) 39.8 L

Perplexity improves
(lower is better)

Source: https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-words/




Resources:

* Google n-gram:

https://research.googleblog.com/2006/08/all-our-n-gram-are-belong-
to-your html

File sizes: approx. 24 GB compressed (gzip'ed) text files

Number of tokens: 1,024,908,267,229
Number of sentences: 95,119, 665,584
Number of unigrams: 13,588,391
Number of bigrams: 314,843,401
Number of trigrams: 977,069,902
Number of fourgrams: 1,313,818,354
Number of fivegrams: 1,176,470,663


https://research.googleblog.com/2006/08/all-our-n-gram-are-belong-to-you.html
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More resources

e Google n-gram viewer

https://books.google.com/ngrams/
Data:
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

circumvallate 1978 335 91
circumvallate 1979 261 91


https://books.google.com/ngrams/
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A Problem for N-Grams:
Long Distance Dependencies

- Many times local context does not provide the
most useful predictive clues, which instead are
provided by long-distance dependencies.

— Syntactic dependencies

« “The man next to the large oak tree near the grocery store on
the corner is tall.”

» “The men next to the large oak tree near the grocery store on
the corner are tall.”

— Semantic dependencies

« “The bird next to the large oak tree near the grocery store on
the corner flies rapidly.”

« “The man next to the large oak tree near the grocery store on
the corner talks rapidly.”

« More complex models of language are needed to
handle such dependencies.
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Google Books Ngram Viewer
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Thank you! Q&A

* SRILM:
* www.speech.sri.com/projects/srilm

* Google N-Gram Release, August 2006, dataset details:
* Over a trillion words

e Over a billion 5-grams (c >= 40)
* Over 13 million unique words (c >= 200)

* Google Books n-gram viewer:
* http://ngrams.googlelabs.com

86


http://www.speech.sri.com/projects/srilm
http://ngrams.googlelabs.com/

Questions?



