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Number of Languages in the World

6000



There are 6000 languages in the world

世界には６０００の言語があります

Machine Translation (MT) 
System



MT Applications
• Dissemination:


• Translate out to many languages, e.g. localization


• Assimilation:


• Translate into your own language, e.g. cross-lingual 
search


• Communication


• Real-time two-way conversation, e.g. the Babelfish!



Warren Weaver, 
American scientist (1894-1978)

Image courtesy of: Biographical Memoirs of the 
National Academy of Science, Vol. 57

When I look at an article in 
Russian, I say: 

”This is really written in English, 
but it has been coded in some 

strange symbols. 
I will now proceed to decode”.



Progress in MT

1947	 1968	

Warren	
Weaver’s	
memo	

Founding	of	SYSTRAN.		
Development	of	Rule-
based	MT	(RBMT)	

Early	2000s	

DARPA	TIDES,	GALE,	BOLT	programs	
Open-source	of	Moses	toolkit	
Development	of	Statistical	MT	(SMT)	

2011-2012:	Early	deep	learning	success	in	
speech/vision	
2015:	Seminal	NMT	paper	(RNN+attention)	
2016:	Google	announces	NMT	in	production	
2017:	New	NMT	architecture:	Transformer	

Seminal	SMT	
paper	from	IBM	

1993	 2010s-Present	



Outline

1. Background: Intuitions, SMT


2. NMT: Recurrent Model with Attention


3. NMT: Transformer Model



Vauquois Triangle



Rule-Based Machine 
Translation (RBMT)

• Rule-based systems:


• build dictionaries


• write transformation rules



Statistical Machine 
Translation (SMT)

• Data-driven:


• Learn dictionaries from data


• Learn transformation “rules” from data


• SMT usually refers to a set of data-driven 
techniques around 1980-2015. It’s often 
distinguished from neural network 
models (NMT), but note that NMT also 
uses statistics!



How to learn from data?

• Assume bilingual text (bitext), a.k.a. parallel text


• Each sentence in Language A is aligned to its 
translation in Language B


• Assume we have lots of this. Now, we can proceed to 
“decode”



1a)	evas	dlrow-eht	
	
1b)	
	
2a)	dlrow-eht	si	detcennoc	
	
2b)	
	
3a)	hcraeser	si		tnatropmi	
	
3b)	�	
	
4a)	ew	eb-ot-mia	tseb	ni	dlrow-eht	
	
4b)�



1a)	evas	dlrow-eht	
	
1b)	
	
2a)	dlrow-eht	si	detcennoc	
	
2b)	
	
3a)	hcraeser	si		tnatropmi	
	
3b)	�	
	
4a)	ew	eb-ot-mia	tseb	ni	dlrow-eht	
	
4b)�



1a)	evas	dlrow-eht	
	
1b)	
	
2a)	dlrow-eht	si	detcennoc	
	
2b)	
	
3a)	hcraeser	si		tnatropmi	
	
3b)	�	
	
4a)	ew	eb-ot-mia	tseb	ni	dlrow-eht	
	
4b)�

dlrow-eht�

dlrow-eht�

3�

1�

Frequency�

si	�

si	�

2�

1�



Inside a SMT system 
(simplified view)

There are 6000 languages in the world

世界 には ６０００ の 言語 が あります

あります  ６０００  言語   には  世界 

TRANSLATION 
MODEL

LANGUAGE MODEL & 
REORDERING MODEL



SMT vs NMT
• Problem Setup:


• Input: source sentence


• Output: target sentence


• Given bitext, learn a model that maps source to target


• SMT models the mapping with several probabilistic 
models (e.g. translation model, language model)


• NMT models the mapping with a single neural network 



Outline

1. Background: Intuitions, SMT


2. NMT: Recurrent Model with Attention


3. NMT: Transformer Model



Neural sequence-to-sequence 
models 

• For sequence input:


• We need an “encoder” to convert arbitrary length input to 
some fixed-length hidden representation


• Without this, may be hard to apply matrix operations 


• For sequence output:


• We need a “decoder” to generate arbitrary length output


• One method: generate one word at a time, until special 
<stop> token



19

das Haus ist gross the house is big

das Haus ist gross

Encoder
“Sentence Vector”

Decoder

step 1: the 
step 2: house 
step 3: is 
step 4: big 
step 5: <stop> 

Each step applies a  
softmax over all vocab



Sequence modeling with a 
recurrent network

20

the house is big .
The following animations courtesy of Philipp Koehn: 

http://mt-class.org/jhu



Sequence modeling with a 
recurrent network

21

the house is big .



Sequence modeling with a 
recurrent network

22

the house is big .



Sequence modeling with a 
recurrent network

23

the house is big .



Sequence modeling with a 
recurrent network

24

the house is big .



Sequence modeling with a 
recurrent network

25

the house is big .



Recurrent models for sequence-
to-sequence problems

• We can use these models for both input and output


• For output, there is the constraint of left-to-right 
generation


• For input, we are provided the whole sentence at once, 
we can do both left-to-right and right-to-left modeling


• The recurrent units may be based on LSTM, GRU, etc.



Bidirectional Encoder for 
Input Sequence

Word embedding: word meaning in isolation 
Hidden state of each Recurrent Neural Net (RNN): word meaning in this sentence



Left-to-Right Decoder

• Input context comes from encoder


• Each output is informed by current hidden state and previous output word


• Hidden state is updated at every step



In detail: each step

29

Context contains information  
from encoder/input

(simplified view)



What connects the encoder 
and decoder}Input context is a fixed-dim vector: 

weighted average of all L vectors in RNN 

How to compute weighting?  
Attention mechanism: 

Note this changes at each step i 
What’s paid attention has more  
influence on next prediction

si-1

ci

hj

⍺0 ⍺1 ⍺2 ⍺3 ⍺4 ⍺5 ⍺6



To wrap up: Recurrent 
models with attention}1. Encoder takes in  

arbitrary length input

2. Decoder generates 
output one word at a time, 
using current hidden state, 
input context (from attention), 
and previous output

Note: we can add layers to make this model “deeper”
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1. Background: Intuitions, SMT


2. NMT: Recurrent Model with Attention


3. NMT: Transformer Model



Motivation of Transformer  
Model

• RNNs are great, but have two demerits:


• Sequential structure is hard to parallelize, may slow 
down GPU computation


• Still has to model some kinds of long-term dependency 
(though addressed by LSTM/GRU)


• Transformers solve the sequence-to-sequence problem 
using only attention mechanisms, no RNN



Long-term dependency
• Dependencies between:


• Input-output words


• Two input words


• Two output words

}
Attention mechanism  

“shortens” path between  
input and output words. 

What about others?



Attention, more abstractly}Previous attention formulation: 

Abstract formulation:  
Scaled dot-product for queries Q, keys K, values V 

si-1

ci

hj

⍺0 ⍺1 ⍺2 ⍺3 ⍺4 ⍺5 ⍺6

query

key & values

(relevance)



Multi-head Attention

• For expressiveness, do at scaled 
dot-product attention multiple times


• Add different linear transform for 
each key, query, value 



Putting it 
together

• Multiple (N) layers


• For encoder-decoder attention, Q: 
previous decoder layer, K and V: 
output of encoder


• For encoder self-attention, Q/K/V 
all come from previous encoder 
layer


• For decoder self-attention, allow 
each position to attend to all 
positions up to that position


• Positional encoding for word order



From: https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html



Summary
1. Background


• Learning translation knowledge from data


2. Recurrent Model with Attention


• Bidirectional RNN encoder, RNN decoder, attention-based 
context vector tying it together


3. Transformer Model


• Another way to solve sequence problems, without using 
sequential models



Questions? Comments?


