A Quick Introduction to
Machine Translation with
Sequence-to-Sequence Models

Kevin Duh

Johns Hopkins University
Fall 2019

Number of Languages in the World

Image courtesy of nasa.gov

There are 6000 languages in the world

4

Machine Translation (MT)

System

HFICEI6000DEFENHDET

MT Applications

e Dissemination:
e TJranslate out to many languages, e.g. localization
e Assimilation:

e TJranslate into your own language, e.g. cross-lingual
search

¢ Communication

e Real-time two-way conversation, e.g. the Babelfish!

When | look at an article in
Russian, | say:
"This is really written in English,
but it has been coded in some

strange symbols.
| will now proceed to decode”.

Warren Weaver,
American scientist (1894-1978)

Image courtesy of: Biographical Memoirs of the
National Academy of Science, Vol. 57

Progress in MT

2011-2012: Early deep learning success in
speech/vision

Seminal SMT 2015: Seminal NMT paper (RNN+attention)
paper from IBM 2016: Google announces NMT in production

2017: New NMT architecture: Transformer

Warren Founding of SYSTRAN. DARPA TIDES, GALE, BOLT programs

Weaver’s Development of Rule- | Open-source of Moses toolkit

memo based MT (RBMT) Development of Statistical MT (SMT)
I | |
I | I
1947 1968 1993 Early 2000s 2010s-Present

Outline

1. Background: Intuitions, SMT
2. NMT: Recurrent Model with Attention

3. NMT: Transformer Model

Vauquois Triangle

Interlingua

Source Target

Rule-Based Machine
Translation (RBMT)

"have" :=

if
subject()

e Rule-based systems: . and object()
en
translate to "kade... aahe"
if
subject()
and object(
]] then
e write transformation rules translate to "laa... aahe”
if
subject()
then
translate to "madhye... aahe"

e build dictionaries

Statistical Machine
Translation (SMT)

e Data-driven:

e | earn dictionaries from data ¥ Statistical
= Machine

e Learn transformation “rules” from data | RLGUSHENM
] ~l Koehn

e SMT usually refers to a set of data-driven
techniques around 1980-2015. It’s often
distinguished from neural network
models (NMT), but note that NMT also
uses statistics!

How to learn from data®?

e Assume bilingual text (bitext), a.k.a. parallel text

e Each sentence in Language A is aligned to its
translation in Language B

e Assume we have lots of this. Now, we can proceed to
“decode”

1a) evas dlrow-eht

1) D XX

2a) dlrow-eht si detcennoc

) D XF 3

3a) hcraeser si tnatropmi

3b)/\’_=>3@: c

4a) ew eb-ot-mia tseb ni dlrow-eht

w @ &k DA F T

1a) evas dlrow-eht

1) (D XX

2a) dlrow-eht si detcennoc

) D XF 3

3a) hcraeser si tnatropmi

3b)/\;>3@: c

4a) ew eb-ot-mia tseb ni dlrow-eht

w @D kK A F T

1a) evas dlrow-eht Frequency

1b) 69 K 69 dlrow-eht 3

2a) dlrow-eht si detcennoc K dlrow-eht 1
v v ¥

Zb) 69 :@: ‘3 :@: Sj p)

3a) hcraeserij tnatropmi B Si 1

3b) & XF e

4a) ew eb-ot-mia tseb ni dlrow-eht

w B & B F T

Inside a SMT system
(simplified view)

There are 6000 languages in the world

TRANSLATION
MODEL

BDEF 6000 =3 IciF HE

LANGUAGE MODEL &
REORDERING MODEL

HRICIE 6000 DEEHN HOET

s

\ /3

SMT vs NMT

e Problem Setup:
e |nput: source sentence
e Qutput: target sentence
e Given bitext, learn a model that maps source to target

e SMT models the mapping with several probabilistic
models (e.g. translation model, language model)

e NMT models the mapping with a single neural network

Outline

1. Background: Intuitions, SMT
2. NMT: Recurrent Model with Attention

3. NMT: Transformer Model

Neural sequence-to-sequence
models

 For sequence input:

* We need an “encoder” to convert arbitrary length input to
some fixed-length hidden representation

 Without this, may be hard to apply matrix operations
 For sequence output:
* We need a “decoder” to generate arbitrary length output

* One method: generate one word at a time, until special
<stop> token

das Haus ist gross* " *

“Sentence Vector”

Encoder Decoder

das Haus ist gross * *

19

the house is big

step 1: the
step 2: house
step 3:is

step 4: big
step 5: <stop>

Each step applies a
softmax over all vocab

Sequence modeling with a
recurrent network

<S>

Given
word

Embedding

3
Hidden
state

Predicted
word

the The following animations courtesy of Philipp Koehn:
the house is big . http://mt-class.org/jhu
20

Sequence modeling with a
recurrent network

<S> the
Given | \
word
Embedding |
Hidden | |
state Y

Predicted
word

the house

the house is big .
21

Sequence modeling with a
recurrent network

<S> the house

Cier . |_I_| _
i 5
dden _1_}4 _I_]., T_|ﬂ

the house 1S

the house is big .
22

Sequence modeling with a
recurrent network

<S> the house 1S

v . Lrl SRR
~HEEE
= == =2t

Predicted
the house IS big

the house is big .
23

Sequence modeling with a
recurrent network

<S> the house

- HHHRE
111

Embedding

-
o _I_}-T_}-,j_)-,

Predicted
word

the house 1S

the house is big .
24

1S

F

big

big

F

Sequence modeling with a
recurrent network

<S> the house IS big

word ~ g_l ¥ ¥ %—\ T
I B
o T_}-vT_I"T—'_' T_'_' TJ_'_‘—

Predicted
the house IS big . </s>

the house is big .
25

Recurrent models for sequence-
to-sequence problems

e We can use these models for both input and output

e For output, there is the constraint of left-to-right
generation

e For input, we are provided the whole sentence at once,
we can do both left-to-right and right-to-left modeling

e The recurrent units may be based on LSTM, GRU, etc.

Bidirectional Encoder for
Input Sequence

Input Word
—p —p Embeddings

Recurrent NN

| ‘ | | Left-to-Right
1 i] T
| “‘ -

Right-to-Left
Recurrent NN

Word embedding: word meaning in isolation
Hidden state of each Recurrent Neural Net (RNN): word meaning in this sentence

h; = f(hj1, B

/z,_f(—> E)

Left-to-Right Decoder

Input Context

Hidden State

Output Words

e |nput context comes from encoder
e Each output is informed by current hidden state and previous output word

 Hidden state is updated at every step

In detall: each step

<S> the

Given
word

! |

Embedding

Hidden
state

-

¥y ¥

Predicted
word

the house

(simplified view)

Context contains information
|;[| IQ Context from encoder/input

State s; = f(si—1, Fy_1,¢;)

Word

Prediction '* W(Usi—1+ VEy,—1+Cc)

Selected
Word

Embedding

29

What connects the encoder
and decoder

Input Word
Embeddings

Left-to-Right
Recurrent NN

Input context is a fixed-dim vector:
weighted average of all L vectors in RNN

Right-to-Left
Recurrent NN

How to compute weighting?
Attention mechanism:

- expl(a(si—1, hj))
Zk eXp((I/<5‘i—1,~ hk))

C;, = ZJ Qljhj

Note this changes at each step i
What'’s paid attention has more
iInfluence on next prediction

%Y

Input Context

Hidden State

Output Words

To wrap up: Recurrent
models with attention

e e S

arbitrary length input :E T MD JD{ ME JD{ R
| | | | | | | | | | | |

Input Context

3

,. Hidden State

Output Words

2. Decoder generates

output one word at a time,
using current hidden state,
input context (from attention),
and previous output

Note: we can add layers to make this model “deeper”

Input Word
Embeddings

Left-to-Right
Recurrent NN

Right-to-Left
Recurrent NN

Outline

1. Background: Intuitions, SMT
2. NMT: Recurrent Model with Attention

3. NMT: Transformer Model

Motivation of Transformer
Model

e RNNs are great, but have two demerits:

e Sequential structure is hard to parallelize, may slow
down GPU computation

e Still has to model some kinds of long-term dependency
(though addressed by LSTM/GRU)

e Transformers solve the sequence-to-sequence problem
using only attention mechanisms, no RNN

Long-term dependency

 Dependencies between: . =)]] D s
‘_‘IT ‘_‘I i‘l — — || Left-to-Right

I I IFI T ’.]'\ - Recurrent NN

e |Input-output words ﬁ Rigrt-to-Lef

e [wo Input words

e [wo output words

Input Context

Hidden State
Attention mechanism v v v
“shortens” path between = ‘E"‘.‘d
input and output words. 1., A 1. Output Words
What about others? N’ N’

Attention, more abstractly

Previous attention formulation:

- Input Word

o - — Embeddings

- exp(a(si—1,hj)) = z m i . ettt Fiah

Yij = ._ ™| Ke | | R t NN
> exp(a(si—1, i) T | = 1I a« === .

Right-to-Left

z : l Recurrent NN

(relevance)
Abstract formulation:

Scaled dot-product for queries Q, kevs K, values V

Attention(Q, K, V') = softmax(@ Input Context

Hidden State

Output Words

Multi-head Attention

e [or expressiveness, do at scaled
dot-product attention multiple times

e Add different linear transform for
each key, query, value
MultiHead (Q, K, V) = Concat(heady, ..., head,)W
where head; = Attention(QW. ,_.Q, K I'-'I/',il SV If"i/',iV)

N/ Umoc lel C I\ N/ C model C A N\, C model C U / I/(.(‘ X a ode
. 7'. E R ! . "' '1', E R ! . - 4 7: E R 1 / /‘/ E R m Xl l

Putting it
together

Multiple (N) layers

For encoder-decoder attention, Q:
previous decoder layer, K and V:
output of encoder

For encoder self-attention, Q/K/V
all come from previous encoder
layer

For decoder self-attention, allow
each position to attend to all
positions up to that position

Positional encoding for word order

7

Add & Norm

Feed
Forward

4

\

Add & Norm

Multi-Head
Attention

|

—t

.

Output

Probabilities

i

Softmax

i

Linear

!

Add & Norm

Feed
Forward

%

Add & Norm

|

J

Positional
Encoding

O

Input
Embedding

|

I

Inputs

Multi-Head
Attention

J_2

)

Add & Norm

Masked
Multi-Head
Attention

.

—t

J

J

as

Output
Embedding

I

Outputs

(shifted right)

Positional
Encoding

From: https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

Summary

1. Background
* Learning translation knowledge from data
2. Recurrent Model with Attention

e Bidirectional RNN encoder, RNN decoder, attention-based
context vector tying it together

3. Transformer Model

* Another way to solve sequence problems, without using
sequential models

Questions? Comments?
ZEAFBEL| Cf rerick_

.q_)Danke EuxoapLotieg op

N Tha N k You KoszonomaE
g Tack o

Da n k Gracias Q.

IET it Merci &

