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The cat sat on
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The cat sat on  __?__
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The cat sat on the mat.
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P(mat |The cat sat on the)
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context  or prefixnext word



Probability of Upcoming Word 

P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)
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context  or prefixnext word



Language Modeling: Motivation

• Language Models are Self-Supervised or, are trained to be
predictive models of the world! 

• Now the question is: how do you formulate and build them?



Terminology: Causal or Auto-regressive Model 
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               GPT
Generative Pre-trained Transformer 

GPT: An Auto-Regressive LM (2018)GPT-2: A Big Language Model (2019)



GPT-2

• GPT-2 uses only Transformer Decoders (no Encoders) to generate new sequences
from scratch or from a starting sequence

Image by http://jalammar.github.io/illustrated-gpt2/



GPT-2: Next Word Prediction

Image by http://jalammar.github.io/illustrated-gpt2/



GPT-2

• As it processes each subword, it masks the “future” words and conditions 
on and attends to the previous words

Image by http://jalammar.github.io/illustrated-gpt2/



GPT-2

• As it processes each subword, it masks the “future” words and conditions 
on and attends to the previous words

Image by http://jalammar.github.io/illustrated-gpt2/



GPT2: Model Sizes 

1542M762M345M117M parameters

Play with it here: https://huggingface.co/gpt2 

[Image by http://jalammar.github.io/illustrated-gpt2/]



GPT2: Some Results 





GPT-3: A Very Large Language Model (2020)

[Slide credit: Sbhya Chhabria & Michael Tang]

• More layers & parameters 

• Bigger dataset 

• Longer training 

• Larger embedding/hidden dimension 

• Larger context window 





GPT4: Try it yourself! 

https://beta.openai.com/playground 



Large Language Models 

26





Scaling Self-Supervised Models 

• Scaling models generally improves their performance! 



Scaling Self-Supervised Models 

• Scaling models generally improves their performance! 

• Larger pre-training datasets 

cheap freely-
available text 

1GB 10GB
10TB



Scaling Self-Supervised Models 

• Scaling models generally improves their performance! 

• Larger pre-training datasets 

• Larger models 



Scaling Self-Supervised Models 

[ Brown et al. 2020. “Language Models are Few-Shot Learners” ]



ChatGPT: LM optimized for Dialogue 

• Built on top of GPT3.x and GPT4.x 

• Fine-tune to respond to interactive dialogue 

• Additional technical component: Instruction-tuning/RLHF
• If you want to learn about it, try CS 601.471/671

• https://self-supervised.cs.jhu.edu/sp2024/

32https://openai.com/blog/chatgpt/ 



"Write George Washington's farewell address as if it was delivered by a pirate"





Is Scale All We Need? 



Is Scale All We Need? 

For what purpose? 
• For many purposes (answering simple questions, translating simple 

sentences) we already have good models. Not our focus. 

• Let’s use this as a goal: 

General intelligence: 
• Engaging in conversation with with humans to solve a variety of problems 
• Work in a variety of contexts/domains 
• Works as good as the best expert human in each domain 
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Let’s do a poll! 



Is Scale All We Need? 

1. Is scale the/a right “hill to climb”? 

2. Even if it is a right “hill” is it feasible/practical to climb 
this hill? (there might be other “hills” too). 



What is “Scale”?

• Compute? 

• Data? 

• Information? 

• Effective compression of information? 
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Is Scale All You Need?

• Compute? 

• Data? 

• Information? 

• Effective compression of information? 
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Argument: Not Enough Compute for Scaling 

• There is simply not enough compute available.
• Models have been increasing 10x every year 

• Moore’s law: # of transistors on an IC doubles about every two years.

• There are physical limits to how much faster computers can get. 

• Even if we have the compute, scaling the compute will be quite costly. 

• Scaling compute is simply infeasible. [QED] 
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Let’s do a poll! 



Argument Against “Not Enough Compute”

• On insufficiency of compute resource:
• Hardware technologies continue to progress at a rapid pace. 

• Huang’s law: advancements in GPUs happen at much faster rate than what 
Moore predicted. 

• So much potentials in parallel computing. 

• On cost-[in]efficiency of scaling:
• While models like GPT3 cost a lot (monetary or otherwise), their availability 

prevent training MANY smaller, mediocre models. 

• Therefore, it might be that the net cost of scaling large models is negative. 
• It is the case within Microsoft according to its CTO, Kevin Scott. 
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Is Scale All You Need?

• Compute? 

• Data? 

• Information? 

• Effective compression of information? 
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Not Enough Data for Scaling

• Hoffmann et al showed that, to be compute-optimal, model size and 
training data must be scaled equally. 

• It shows that existing LLMs are severely data-starved and under-trained. 

• Given the new scaling law, even if you pump a billions of params into a 
model, the gains will not compensate for more training tokens. 

• There is simply not enough [language] data. [QED] 

46[Training Compute-Optimal Large Language Models. Hoffmann+ NeurIPS, 2022]

Let’s do a poll! 



Argument Against “Not Enough Data” (1)

• Data is growing exponentially (?)

47

Wikipedia size



Argument Against “Not Enough Data” (2)

• You can harness data from other modalities. 

• For example, to get more text data we can build a solid speech processor 
model that converts speech to text. 

• (aside: more than 80% if internet traffic is video) 

• (aside2: is that why OpenAI built Whisper?!) 

48["Robust speech recognition via large-scale weak supervision." Radford+ 2022]



Argument Against “Not Enough Data” (3)

• You can use data more effectively. 

• Sorscher et al. lays out recipes to 
achieve *exponential* scaling instead 
through statistical mechanics theory. 

• Carefully curating a small subset goes a 
long way!

49[Beyond neural scaling laws: beating power law scaling via data pruning. Sorscher+ 2022]



Scale is Not all You Need Because of Tail Phenomena 

• Tail phenomena will never go away! 

50

tasks

p
o

p
ularity

Head tasks: 
• Translating simple sentences 
• Generate rhyming sentence 
• Indicating spans of location
• …



Scale is Not all You Need Because of Tail Phenomena 

• Tail phenomena will never go away! 
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Tail tasks: 
• Translation while while retaining rhyme scheme.
• Extract all ACL conference chairs since 1990.
• Do literature review summarizing human studies on corona viruses.
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Impact of Pretraining Term Frequencies on Few-Shot Reasoning, Razeghi+ 2022
Large Language Models Struggle to Learn Long-Tail Knowledge, Kandpal+ 2022

Scale is Not all You Need Because of Tail Phenomena 



• Tail phenomena will never go away! 

• Will result in brittleness to 
small changes 
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“Tesla's Autopilot system 
confusing horse-drawn 
carriage for truck”

Scale is Not all You Need Because of Tail Phenomena 
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Scale is Not all You Need Because of Tail Phenomena 

• Hence, scale won’t solve the tail phenomena. [QED] 
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tasks
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Head tasks: 
• Translating simple sentences 
• Generate rhyming sentence 
• Indicating spans of location
• …

Let’s do a poll! 



Given all these arguments, what do you think now?

Is Scale All We Need? 



Putting it All Together 

• “Scaling” is here is here to stay for now. 
• There is plenty of data out there that we haven’t been able to use. 

• There is no sign of development in hardware technology. 

• The long tail poses a serious challenge: 
• It’s possible that scaling will continue to yield gains in the long-tail, but unlike 

to solve it. 

• It is unclear if there are better ways of solving long tail phenomena. 

• Unclear “scale” can say  about other aspect of intelligence 
• coordination, cooperation, communication, etc. 
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Augmenting Humans vs. Replacing Them

• It’s unlikely that ”scaling” will lead to complete reliable/accountable 
models.

• Hence, the foreseeable future is about human-AI loop. 

• It is more productive to think of them as ”amplifiers” of human 
abilities. 
• A calculator does not replace engineers, but it enables them. 
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Thank you! 
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How does the future look like to you? 

Which future will we have? 

1. One very large model

2. Few very large models 

3. Many vey large models 
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