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Roadmap
• Introduction:

• Task, Terminology, Framework

• Neural Embeddings:
• X-Vectors

• Encoder Architectures:
• TDNN
• ResNet, Res2Net
• ECAPA-TDNN

• Pooling Mechanisms:
• Statistics
• MHAtt,

• Loss Functions:
• Cross-Entropy
• AM-Softmax, AAM-Softmax

• Back-end:
• Cosine Scoring, PLDA
• Score-Normalization, Calibration

• Other Topics in Speaker Recognition:
• Spoofing Attacks
• Adversarial Attacks
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Introduction
Task, Terminology, Framework
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Extracting Information from Speech

Speech
Recognition

Language
Recognition

Speaker
Recognition

Words

Language Name

Speaker Name

“How are you?”

English

James WilsonSpeech 
Signal

Speaker 
Diarization

Who Speaks When
Bob: Meeting tonight?
Alice: yes!

Goal: Automatically extract information transmitted in speech signal

Emotion
Recognition Emotional State

Happy: 90%

Pathology 
Detection

Medical Conditions
Parkinson’s: 70%, Covid-19: 30%



Voice Biometrics / Speaker Recognition
• Biometric modality consisting in recognizing people from the 

characteristics of their voices
• Properties of speech influenced by:
• Anatomy: 

• Shape and size of voice production organs (vocal track, larynx, nasal cavity)
• Behavioral patterns (Manner of Speaking):

• Accent, rhythm, intonation style, pronunciation pattern, vocabulary

• Advantages:
• Easy to use -> speech is a natural way of communication
• Non-intrusive -> Well accepted by users
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Speaker Recognition Applications
• Law Enforcement and Forensics
• Search for criminals in telephone conversations

• Telephone threats
• Detect known fraudsters (black-listed)

• Voice sample taken at a crime scene can convict or discharge in court
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Speaker Recognition Applications
• Identity Authentication and Access Control
• Access to high security physical facilities:

• Military base, airports, government buildings

• Computer networks, web services

• Password Reset

• Telephone/electronic banking
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Speaker Recognition Applications

• Meeting Transcription
• Enrich adding meta-data
• Who said what in a meeting?
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Spk1: If we want to solve 
automatic speech 
recognition

SPK1
SPK2

Spk2: You need to first breakdown 
those results.

Spk3: Ok, I will put them in a Table or 
graph. I will also detail the 
algorithm…

SPK1
SPK2

SPK3



Speaker Recognition Applications
• Audio-Visual Media Indexing
• Broadcast TV, YouTube
• Add Meta-data

• Who is speaking in this video
• When is he/she speaking

• Improve document indexing and search

• Personalization
• Voice Assistant adapt to the user

• Play user’s favorite music
• Read user’s emails
• Parental control
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• Determine whether a test speaker matches one of a set of known 
speakers 
• Referred as closed-set identification.
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Speaker Classification/Identification

?

?

?

Whose voice is this?

Bob

Alice

Peter



• Determine whether a test speaker matches a specific target speaker 
• Unknown speech may come from a large set of unknown speakers –

referred as open-set verification
• This is most common task in speaker recognition, close to real 

application.
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Speaker Verification

?

Is this Bob’s voice?
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Speaker Verification Pipeline

Unknown test

Alice?

Acoustic 
Features

Acoustic 
Features

Acoustic 
Features

Speaker 
Embedding

Speaker 
Embedding

Statistical Modeling

Speaker 
Embedding Metric Calibration

Metric Calibration

Training/Development Phase

Enrollment Phase

Test Phase

Train DB

Decision

Alice
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Speaker Verification Pipeline: Acoustic Features

Unknown test

Acoustic 
Features

Acoustic 
Features

Acoustic 
Features

Speaker 
Embedding

Speaker 
Embedding

Statistical Modeling

Speaker 
Embedding Metric Calibration

Metric Calibration

Training/Development Phase

Enrollment Phase

Test Phase

Train DB

Decision

Alice



• Time sequence of acoustic features is needed to extract the speech information
• Short-time spectral features are computed using a sliding window
• Time-frequency representation of the signal
• Filter bank in log Mel scale (Mel filtered spectrogram)

15

Acoustic Features
Fr

eq
 (H

z)

Time (sec)

3.4
3.6
2.1
0.0
-0.9
0.3
.1

3.4
3.6
2.1
0.0
-0.9
0.3
.1

3.4
3.6
2.1
0.0
-0.9
0.3
.1

Fourier 
Transform

Magnitude
! log()



16

Speaker Verification Pipeline: Acoustic Features

Unknown test

Acoustic 
Features

Acoustic 
Features

Acoustic 
Features

Speaker 
Embedding

Speaker 
Embedding
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• Difficult to Compare Enrollment and Test recordings using Acoustic Features

• They have different durations, different number of feature vectors
• Cannot calculate something like Euclidean distance between feature matrices

• The sequence of phonemes is different in each one of them 
• Early systems were text-dependent, same phrase in enrollment and test

Speaker Embeddings

Enroll.:

Test:
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• Modern solution: Speaker Embeddings
• Transform variable length recording into a single vector - Embedding
• Embedding retains the speaker identity information

Speaker Embeddings
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• Train the network to classify speakers
• Large dataset > 1K speakers

• After training:
• Take intermediate layer as speaker embedding

Speaker Id

Speaker Embedding
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Speaker Verification Pipeline: Acoustic Features

Unknown test
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• Assume that:
• 𝐰& spk. embedding from enrollment utterance of speaker X
• 𝐰' spk. embedding from test utterance of person that claims to be speaker X

• The Metric compares enrollment and test embeddings 𝐰! , 𝐰"
• Cosine scoring:

• PLDA 
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Metric (Back-end)

𝑠 = cos 𝜙 =
𝐰!
"𝐰#
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Speaker Verification Pipeline: Acoustic Features
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Calibration, the Art of Choosing the Threshold

• How do we choose the decision threshold?

• High Security Application -> High decision threshold.

• Low Security Application: Low decision threshold

yes ?
no ?

scores q
<
³Speaker Verification 

System



• Put >1k of target and impostor trials into the 
systems and count the errors
• Types of Errors:

• Miss/False rejection: 
• True speaker is classified as impostor
• Metric: Miss rate 𝑃!"##

• False alarm:
• Impostor is classified as the true speaker
• Metric: False alarm rate 𝑃$%
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Performance Metrics

yes ?
no ?

scores q
<
³Speaker Verification 

System
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• Detection Error Trade-off (DET)
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Performance Metrics

True positive

True Negative

Miss, false rejected

False Accepted

• Equal Error Rate (EER) • Detection Cost Function (DCF)



Neural Embeddings
X-Vectors
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X-Vectors
• X-Vector network has three parts:

• Encoder: 
• Input: Acoustic features log-Mel spectrogram.
• Output: frame level hidden representations.

• Pooling: 
• Summarizes representations into a single vector / utt.
• Mean, Mean+Stddev, …

• Classification Head: 
• Predicts posterior probabilities for the training speakers.
• Embedding extracted from middle layer.

• Categorical cross-entropy loss:

• Compares each utterance against all the speakers in the training data.
• Does not need hard negative sampling.
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Snyder, David, et al. "Deep Neural Network Embeddings for Text-Independent Speaker Verification." Interspeech. 2017.
Snyder, David, et al. "X-vectors: Robust dnn embeddings for speaker recognition." 2018 IEEE international conference on acoustics, 
speech and signal processing (ICASSP). IEEE, 2018.



Neural Embeddings Architectures
TDNN, ResNet2D, ECAPA-TDNN
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TDNN x-Vector
• TDNN Encoder for x-Vector
• TDNN layer: 1d Dilated Convolution
• Aggregates information over a larger receptive field as it gets 

deeper.
• Dilation makes the receptive field to grow faster.

29

7'11

7'11

7'11

'HQVH

VRIWPD[

'HQVH

(PE

'HQVH

'HQVH

0HDQ���6WGGHY

Snyder, David, et al. "Deep Neural Network Embeddings for Text-Independent Speaker Verification." Interspeech. 2017.



Residual Networks with 2D Convs
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2D Conv with 1 in/out channels
• Feature Map: (B, 1, F, T) -> (B, 1, F, T)

Animations from https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1

2D Conv with Cin/Cout channels
• Feature Map: (B, Cin, F, T) -> (B, Cout, F, T)
• Kernel : (Cout, Cin, k, k)

Strided Convolution
• Downsamples feature maps
• Feature Map: (B, Cin, F, T) -> (B, Cout, F/stride, T/stride)
• The receptive field of the next layers is multiplied by the 

stride.

https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1


ResNet 2D
ResNet Scheme
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ResNet34

ResNet50

(B, 1, F, T)

(B, 64, F, T)

(B, 128, F/2, T/2)

(B, 256, F/4, T/4)

(B, 512, F/8, T/8)

He, Kaiming, et al. "Deep residual learning for image 
recognition." Proceedings of the IEEE conference on computer vision 
and pattern recognition. 2016.



Res2Net
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Res2Net
• Learns multi-scale features:

• Each channel group observes a different receptive field
• Typically use scale=4 or 8

• Increases global receptive field in the full network

• Best in VoxCeleb, SRE19AV, SRE21

Res2Net50

Gao, Shang-Hua, et al. "Res2net: A new multi-scale backbone architecture." IEEE transactions on 
pattern analysis and machine intelligence 43.2 (2019): 652-662.

RF=(1, 3, 5, 7)

Receptive Field (secs.)

ResNet34 2.4

ResNet50 1.2

Res2Net50 scale=4 3.6

Res2Net50 sale=8 8.3



Squeeze-Excitation ResNet

ResNet Scheme 33

ResNet34

ResNet50

Res2Net50

Temporal Squeeze-Excitation
• Pooling only on Time dimension
• Applies different scaling at each channel and frequency dimension

Hu, Jie, Li Shen, and Gang Sun. "Squeeze-and-excitation networks." Proceedings of the IEEE 
conference on computer vision and pattern recognition. 2018.



• ECAPA-TDNN: 
• Res2Net 1d
• Squeeze-Excitation
• Dilated convolutions in the 

bottleneck layer to increase 
receptive field
• No downsamplings feature maps
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ECAPA-TDNN

N.Net. Num. 
layers

Layer dim. Receptive 
Field 
(secs.)

Small 3 512 0.23

Large 4 2048 0.33



Neural Embeddings Takeaways

• SOTA approaches based on the x-Vector scheme:
• Categorical Cross Entropy

• Architectures based on 1D, 2D Convolutions and Transformers.

• Best Architectures:
• Res2Net with 2D Convolutions
• ECAPA-TDNN: Res2Net with 1D Dilated Convolutions.
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Pooling Mechanisms
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Mean and Statistics Pooling
• Global Average Pooling
• Mean of Encoder representations along time dimension.
• For 1D Encoders: (B, C, T) -> (B, C)
• For 2D Encoders: (B, C, F, T) -> (B, C x F, T) -> (B, C x F)

• Global Statistics Pooling
• Concatenate:

• Mean along time dimension.
• Standard Deviation along time dimension.

• For 1D Encoders: (B, C, T) -> (B, 2 x C)
• For 2D Encoders: (B, C, F, T) -> (B, C x F, T) -> (B, 2 x C x F)

37
Snyder, David, et al. "Deep Neural Network Embeddings for Text-Independent Speaker Verification." Interspeech. 2017.
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Attentive Statistics Pooling
• Statistics Pooling with different weight for each frame.
• More weight for most important frames

• Weight calculus:
• Weights sum up to one in time dimension
• f(x) = tanh(x)

• Weighted mean and std. dev:

38
Okabe, Koji, Takafumi Koshinaka, and Koichi Shinoda. "Attentive statistics pooling for deep speaker embedding." arXiv preprint 
arXiv:1803.10963 (2018).



Multi-Head Attention
• Attentive Statistics Pooling with H heads
• Each heads look at different types of frames.
• Computes a different set of weights per head.

• The weights of each head sum up to 1 in the time dimension.

• Computes weighted statistics per head

• Concatenate mean and std. dev of all heads.
• Feature Maps: (B, C, T) -> (B, 2 x C x H)
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Pooling Mechanism Take Aways
• Summarizes Sequence of Encoder representations into single vector.

• Best techniques uses some form of attention.
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Loss Functions
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Multi-class Cross-Entropy
• Categorical Cross-Entropy is the basic loss function for speaker 

embeddings.

• W is the reference vector for speaker i in the training set.
• Compares h versus all the training speakers
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Additive Margin Softmax (AMSoftmax, CosFace)

• Score for each class is cosine of the angle between input and the class vector.
• The norm of the input vector, is normalized to 1.
• Multiplies by scale value s ~ 30 to sharpen the posterior probabilities

• Subtract Margin m from the score of the true class
• Creates Stronger Gradients for Correctly classified classes
• Increase separation between Embedding of Different Classes

43
Wang, Hao, et al. "Cosface: Large margin cosine loss for deep face recognition." Proceedings of the IEEE conference on 
computer vision and pattern recognition. 2018.

Softmax Cross-Entropy

𝑥" = 1, ∀𝑖



Additive Angular Margin Softmax (Arc-Face)

• Decision Margins:

44

Deng, Jiankang, et al. "Arcface: Additive angular margin loss for deep face recognition." Proceedings of the IEEE/CVF conference on computer 
vision and pattern recognition. 2019.
Liu, Yi, Liang He, and Jia Liu. "Large Margin Softmax Loss for Speaker Verification}}." Proc. Interspeech 2019 (2019): 2873-2877.

𝜃" Angle between Embedding and Reference Vector for class i



Losses Takeaways

• Large Margin Losses Boost Performance in Speaker and Face Recognition

• AM-Softmax and AAM-Softmax Best

45



Back-end
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• Assume that:
• 𝐰! spk. embedding from enrollment utterance of speaker X
• 𝐰" spk. embedding from test utterance of person that claims to be speaker X

• The Metric compares enrollment and test embeddings 𝐰" , 𝐰#

• Cosine scoring:

• Simplest Metric
• Large Margin Losses optimize a cosine score metric
• Works well in many tasks:

• VoxCeleb
• Eval Data is in-domain
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Metric (Back-end)

𝑠 = cos 𝜙 =
𝐰&/𝐰'

𝐰& 0 𝐰' 0
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Linear Discriminant Analysis
• LDA projects embeddings into a new vector space:

• Maximize the separation between classes.
• Minimizes the covarianze within each class

• Between/Within-class covariances:

• Solve the generalized eigenvalue problem:

48



Probabilistic Linear discriminant Analysis (PLDA)
• Probabilistic version of LDA
• x-vector j of class i is decomposed as a sum of several terms

• 𝜇 is the class-independent mean of all the i-vectors
• V is low rank matrix defining the inter-class variability space
• 𝑦! ~ N 0, I are the coordinates of the speaker in the space defined by V
• 𝜖!" ~ N(0,𝐖) where W is the intra-class covariance.
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PLDA Evaluation
• Evaluates a Log-likelihood ratio test between two hypothesis:
• Probability for enrollment and test vectors were generated by the same speaker

• Have the same y
• Probability for enrollment and test vectors were generated by different speakers

• Have the same y
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LLR = log %('$,'%|*+,-)
%('$,'%|/#00)

= log ∫ % 𝑤2 𝑦 % 𝑤3 𝑦 %(4)/4
∫ % 𝑤2 𝑦 %(4)/4 ∫ % 𝑤3 𝑦 %(4)/4 = log
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5 𝑤2 𝜇, 𝐕𝐕6 +𝐖 5 𝑤3 𝜇, 𝐕𝐕6 +𝐖

S. J. D. Prince and J. H. Elder, "Probabilistic Linear Discriminant Analysis for Inferences About Identity," 2007 IEEE 11th 
International Conference on Computer Vision, 2007, pp. 1-8, doi: 10.1109/ICCV.2007.4409052.



Score Calibration 

• How do we choose the decision threshold?
• Posterior probability for target trial:

• Prior probability of finding a target trial 

• Derive the threshold for the log-likelihood ratio:

yes ?
no ?

scores q
<
³Speaker Verification 

System



Score Calibration
• Back-end Scores 𝑠 need calibration
• Cosine scoring does not produce a log-likelihood ratio.
• PLDA does produce a log-likelihood ratio but not always is well calibrated.

• Linear calibration: LLR = 𝑎 𝑠 + 𝑏
• Trained with Weighted binary cross-entropy:

• Train on a held-out set of target/non-trials

52

Brümmer, Niko, and Johan Du Preez. "Application-independent evaluation of speaker detection." Computer Speech & 
Language 20.2-3 (2006): 230-275.



Back-end Pipeline
• The common back-end pipeline may involve all the blocks:

53

LDA Centering 
Whitening PLDA CalibrationLength 

Normalization



Back-end Takeaways
• Cosine scoring works well for easy tasks
• Training and Test data are from the same domain

• PLDA is better when the embedding training data is out-of-domain
• Some in-domain data can be used to train the PLDA

• Calibration allow us to set the threshold given a target prior probability.
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Other Topics in 
Speaker Recognition
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Spoofing Attacks
• Impostor tries to Impersonate a legitimate user
• Acquire Victim’s Voice Sample

• Replay Attack

• Text-to-Speech

• Voice Conversion
56

“My voice is my password”

TTS
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ASV

ASV

ASV



Spoofing Detectors
• Physical access:

• Spoofing audio played over air channel
• Focus: detect loudspeaker and far-field artifacts

• Logical Access:
• Signal injected in ASV digitally (no air-channel)
• Focus: detect TTS and VC vocoder artifacts

• From pure signal processing to Deep learning 
detectors

57
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Single SE-ResNet34 Fusion

JHU System for ASVSpoof2019 challenge is fusion of
• ResNets, Squeeze-Excitation ResNet and Dilated ResNet
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Villalba, J., Lleida, E.. Preventing Replay Attacks on Speaker Verification Systems. In IEEE ICCST 2011
Lai, C.-I., Chen, N., Villalba, J., Dehak, N. ASSERT: Anti-Spoofing with Squeeze-Excitation and Residual neTworks. In, INTERSPEECH 2019



Adversarial Attacks
• Adversarial Attacks add a small perturbation to the signal, which is 

imperceptible for humans but changes the output of the ML systems

• Few studies in speaker verification (most works are in image domain)

58

Panda 60% Gibbon 99%

+ 𝜀 ×



• Goal of the attacker:
• Impersonation
• Evasion

• Knowledge of the attacker:
• White-box: 

• Attacker has full knowledge of the victim system, architecture and parameters
• Black-box:

• Attacker doesn’t have access to the victim model

• Optimization method used to obtain the adversarial sample:
• Fast gradient sign method (FGSM), Iterative FGSM, Carlini-Wagner 

59

Types of Adversarial Attacks



• Fast Gradient Sign Method (FGSM) [Goodfellow et al. 2015]

• 𝐽 is the objective function (Binary cross-entropy for the speaker verification task)
• ε is equal to the perturbation 𝐿7 norm
• Fast method (1 forward/backward pass), not optimal

• Iter-FGSM: 
• Multiple FGSM iterations, stronger attacks

• Others: 
• Carlini-Wagner-L2/Linf/L0, PGD-Linf/L2/L1, etc

60

FGSM Attacks

Goodfellow et al. “Explaining and harnessing adversarial examples”, ICLR 2015

+ 𝜀 ×
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Results White-box Attacks
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• Benchmark SOTA Speaker Verification 
against adv. attacks

• EER(%) vs SNR
• SNR = 10 log28
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• Iter-FGSM method achieves 50 % EER 
for SNR>30dB

Villalba, J., Zhang, Y., Dehak, N. x-Vectors Meet Adversarial Attacks : Benchmarking Adversarial Robustness in Speaker Verification. In Interspeech 2020. 

Attack Perceptible
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Generative Models as Defenses
• Investigating how to use Generative Models as Defenses

• Generative model defines the manifold of benign signals
• Trained on clean data
• VAE, GAN

• Assumption: 
• Adversarial signals are outside of the manifold

• Project adversarial sample into the benign manifold  

62

Joshi, S., Villalba, J., Zelasko, P., Moro, L., Dehak, N. Adversarial Attacks and Defenses for Speaker Identification Systems, Submitted to IEEE Transactions
of Information Forensics and Security
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VAE/WaveGAN Defense
• Variational Autoencoder Defense
• Applied in log-Mel Spectrogram 

domain

• ParallelWaveGAN vocoder
• Re-Synthetize Speech Waveform 

given the Mel-Spectrogram
• Trained on mix of adversarial and 

multi-scale short-time Fourier 
transform losses 
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WaveGAN Vocoder

Extract log-Mel spectrogramOriginal signal

Random noise Re-synthesized signal

VAE
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Defenses Result
• Evaluate on a 40 speaker’s Speaker Identification task based on LibriSpeech
• Two cases:

• Black-box Defense: The adversary doesn’t know that there is a defense
• White-box Defense: The adversary can adapt to the defense

• WaveGAN performs very in the black-box case, need to improve in the white-box case
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