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Low-Dimensional Representation
— Sequence of features: GMM
— Low-dimensional vectors: i-vectors

— Processing i-vectors: inter-session variability compensation and
scoring

— X-vectors
Applications
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— Terminology, tasks, and framework
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Goal: Automatically extract information
transmitted in speech signal

Speech
RECOONION | o alibirtbed
“‘How are you?”

4 Recog sy Language Name

Speech Signal English
Speaker
ta sl SRR I == SPeaker Name
e James Wilson
Speaker Who Speaks When

Diarization » 5ob: Meeting tonight?|
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Alice: yes!  osnsizots

Identification
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- Determine whether a test speaker (language) matches one
of a set of known speakers (languages)

+ One-to-many mapping

+ Often assumed that unknown voice must come from a set of
known speakers — referred to as closed-set identification

Whose voice 1s this? Which language 1s -
a this?
Introduction to HLT 0911872019

Verification/Authentication
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Determine whether a test speaker (language) matches a
specific speaker (language)

One-to-one mapping

Unknown speech could come from a large set of unknown
speakers (languages) - referred to as open-set verification

Adding “unknown class” option to closed-set identification
gives open-set identification

Is this Bob's voice?
? ﬁi ? -

Introduction to HLT 00/18/2018
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Segmentation and Clustering

Diarization answers the question: Who speaks when?
Involves:

— Determine when a speaker change has occurred in the speech signal
(segmentation)

— Group together speech segments corresponding to the same speaker
(clustering)

Prior speaker information may or may not be available

Which segments are from
the same speaker?

Introduction to HLT B 09/18/2019

Framework for Speaker/Language ( NOSEDIPOESN
Recognition Systems

Training Phase
Known train Model for each
speaker (language)

= .I Feature Traming g
extraction H algorithm I-’ Bob (English)
parameters Sally (Spanish)

—
—

___________________________ |-

Recognition Phase

m

\ 4
2 Feature Recognition i
! "W"‘"" extraction H algorithm I'> Decision
Unknown test
Speaker/language set J
Introduction to HLT 0011812019
L "%, CENTERFORLANGUAGE
Information in Speech ). MOSPEEHPROESSG

- Speech is a time-varying signal conveying multiple
layers of information
— Words
— Speaker
— Language
— Emotion

« Information in speech is observed in the time and
frequency domains

o il LA

Frequency (Hz)

m‘ Il IR
b
C,)
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Speech Modalities

Application dictates different speech modalities:
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Text-dependent

Text-independent |

* Recognition system knows
text spoken by person

¢ Examples: fixed phrase,
prompted phrase

* Used for applications with
strong control over user input

¢ Knowledge of spoken text can
improve system performance

Introduction to HLT

¢ Recognition system does not know text

spoken by person

¢ Examples: User selected phrase,

conversational speech

¢ Used for applications with less control

over user input

¢ More flexible system but also more

difficult problem

¢ Speech recognition can provide

knowledge of spoken text

00/18/2019
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+ Low-Dimensional Representation
— Sequence of features: GMM

00/18/2018
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+ A time sequence of features is needed to capture speech

information

— Typically some spectra based features are extracted using sliding
window - 20 ms window, 10 ms shift

i

Frequency (Hz)
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Features Gaussian Mixture Models

+ For most recognition tasks, we need to model the
distribution of feature vector sequences

=

-

100 vec/sec

-.'1
Fourier Cosine
Transform
A
38
83
)
-
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Gaussian Mixture Models
+ For most recognition tasks, we need to model the - A GMM is a weighted sum of Gaussian distributions
distribution of feature vector sequences
T3 M
bt ) | ]| oo p(E|2)= pbi(%)
' ' 11 o2 i=1
5
* In practice, we often use Gaussian Mixture Models (GMMs). /IS = ( Dis s Zl_)
Signal Space o
: T p; = mixture weight (Gaussian prior proability)
MANY
H- | Training
Utterances

/i, = mixture mean vector

X, = mixture covariance matrix

/ N/

Feature Space

-ﬁ

- 1 o ol -
bi(x)=WeXp(—%(X—y‘.) z ('x_lui))
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Log Likelihood Log Likelihood
+ To build a GMM, we need to do two things * To build a GMM, we need to do two things
1 — Compute the likelihood of a sequence of features given a GMM 1 — Compute the likelihood of a sequence of features given a GMM
2 — Estimate the parameters of a GMM given a set of feature 2 — Estimate the parameters of a GMM given a set of feature
vectors vectors
« If we assume independence between feature vectors in
a sequence, then we can compute the likelihood as
N
PG Xy [ D) =] PG, 12)
n=l1
Introduction to HLT oonerzots Introduction to HLT oonsrzots




Gaussian Mixture Models
Log Likelihood
+ Using a GMM involves two things:
1 — Compute the likelihood of a sequence of features given a GMM

2 — Estimate the parameters of a GMM given a set of feature
vectors

+ If we assume independence between feature vectors in
a sequence, then we can ct]:\»,mpute the likelihood as

PEn®y |1 =]] PG, 12)
n=1
+ Usually written as log Iikelihzc\.l)od

log p(%,...%, | 1) = Y log p(%, | )
n=1
N M
= Ylog| ¥ (%)
n=1 i=1
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Parameter Estimation

+ GMM parameters are estimated by maximizing the
likelihood of on a set of training vectors

N
A" =argmax Y log p(%, | 1)
A

n=1

- Setting the derivatives with respect to model
parameters to zero and solving

1 N -
. p=—> Pril%)
Pr(i|7) = P2 1N !
pb,(®) i =S5 Pri|F)F
E b, A= IR UERES

i

Lo¥ b mvmm o
3= n—EM Pr(i|X,)x X, '- i,

i

N o=
n=y Pril%)
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GMM-UBM

Realization of log-likelihood ratio test from signal detection theory

LLR = A =log p(X | target) —log p(X | target)

)f] e )*CN Target model «
Feature 3 A A >0 Accept
Extraction

- A <0 Reject
Background

model % |

GMMs used for both target and background model
— Target model trained using enrollment speech

— Background model trained using speech from many speakers
(often referred to as Universal Background Model — UBM)

Introduction to HLT
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Parameter Estimation

+ GMM parameters are estimated by maximizing the
likelihood given a set of training vectors

N
A= argmaxElogp(Scn [A)
A =l

Introduction to HLT
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Expectation Maximization (EM)

E-Ste = M-Ste

Probabilistically align vectors to model Update model parameters

E Pr(x|1) X
x Y x, ¥
Pr(x|3)
pib(¥)
.

Pr(i| %)=
PRIAC)
&

N -
n =2 Pr(i| %)
Accumulate ! n=l "
sufficient

- N P
statistics E (%)= Em Pr(i|X,)X,

Pr(x[2)

E (%) = EA, Pr(i|¥)% ¥’

nn
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MAP Adaptation

"% CENTERFORLANBAGE
). MDSPEDHPROESSG

« Target model is often trained by adapting from
background model

— Couples models together and helps with limited target training data
« Maximum A Posteriori (MAP) Adaptation (similar to EM)

— Align target training vectors to UBM

— Accumulate sufficient statistics

— Update target model parameters with smoothing to UBM
parameters

« Adaptation only updates parameters representing
acoustic events seen in target training data
— Sparse regions of feature space filled in by UBM parameters
+ Side benefits

— Keeps correspondence between target and UBM mixtures
(important later)

— Allows for fast scoring when using many target models (top-M

Introduction to HSPOMNG)
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Adapted GMMs
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= glarget
*  Probabilistically align target Pr(i | %)= pb(X) Kmaa'ﬁeng
training data into UBM mixture M - i % e
states zl p;b;(X) x
p=
, UBM
Introduction to HLT osr18r201

Adapted GMMs

Mean-only adaptation
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— T t
* Probabilistically align target Pr(i| %)= pb(X) ) ﬁ%eng
training data into UBM mixture M ~ % e
states zl p,b(X) ‘
=

(X4

¢ Accumulate sufficient statistics

from probabilistic alignment n = Zl. Pr(i| %,)
— Mean-only adaptation empirically SNV .
found to be better E(X)= Z,,:\ Pr(i|%,) %,

Introduction to HLT 00/18/2019

Adapted GMMs

Mean-only adaptation
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P . = Targel
* Probabilistically align target Pr(i| )= pb,(X) ; rammg
training data into UBM mixture M ~ X data
states Z‘ Pb; (%) ‘
=
. , uBM
* Accumulate sufficient statistics N | é
from probabilistic alignment n =y Pii|%,)
— Mean-only adaptation empiricall; - N T,
found to ge bet?er P Y E (%)= erl Pr(i|X,) %,
¢ Update target model parameters . v !
using sufficient statistics and adapt n
parameter (o) o, =—" ’ ’ fhn

i
— Relevance factor r controls rate of n+r | é
adaptation

— r=>0 MAP 2> EM - - — ubm
— r 2 «. No adaptation H; = alEi(x)+(] al)

Introduction to HLT 00/18/2019

GMM-UBM Recap
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(1) Extract feature vector
sequence from speech

GMM-UBM Recap
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(3) Adapt target model from UBM

Target

1o ¢
Y

—f>
./

| /

2) Traln UBM with speech
from many speakers using
EM

(1) Extract feature vector
sequence from speech
signal

bt e [
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signal
i e )
(2) Train UBM with speech
from many speakers using
EM
Introduction to HLT oonsrzots
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(3) Adapt target model from UBM
', vode
l \ (/

(1) Extract feature vector ’ ’ (4) Compute likelihood
sequence from speech ratio of test data
signa i

aninily b log p(X “log p(X
UBM 0g P(X | Ayger) —10g P(X | 4,4,,)
(2) Train UBM with speech
from many speakers using
EM
Introduction to HLT oonsrzots
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Roadmap

+ Low-Dimensional Representation

— Low-dimensional vectors: i-vectors
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* The super-vector mean of the GMM of a given recording is
written as

M=m+Tw
- w standard Normal random (total factors — intermediate vector

or i-vector)
A, O

— m: A supervector mean (can be the UBM-GMM)
1 my tir tr2
M2 m; ta1 t22 Q
Mo M tir tg | [ W1 UBM
= * W A «/
M2 m; ta1 t22
H1 my tin ti2 . '

— T : low rank Total variability matrix
m, i é

ta1 t22

Introduction to HLT 00/18/2019

Why call it an i-vector?

‘u,l |- for Intermediate
1 representation
GMM components: 2048
Foatur dimension: 60 W T
GMM-SV : \
60*2048=122880 Uy, E
I
Uy, o
R
Uy,
Actuall
BB
| Usy

Introduction to HLT

"%, CENTERFORLANGUAGE
). MOSPEEHPROESSG

v
F
C
C

[Feature dimension 60
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Visual Interpretation of i-vectors

H1 my
H2 my
Hi o M
H2 mz
H1 my
H2 my

Introduction to HLT

G

tio
tao
tio
tao
tio

tao
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Visual Interpretation of i-vectors ( OSHED OCESN:

+ To obtain robust estimate of an utterance specific GMM, the
mean super-vector is constrained to live in a linear high
variability subspace with

High variability subspace
(400 bases)

M=m+Tw

M1 my Ntz

' b2 m2 o1 t22
Mo [ M|, |t tee [W1 ]
b2 m2 to by | [W2
1 my t1 2

' b2 m; o1t

Utterance specific mean
super-vector

Introduction to HLT 09/18/2019

Visual Interpretation of i-vectors
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M1 my itz

b2 m2 o1 t22

Moo M|, | bt Wi

b2 m2 to by | [W2
. M1 my t1 2

b2 m; 1t

Introduction to HLT
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Visual Interpretation of i-vectors
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L M1 my itz
M2 m2 o1 t22
M| M|, |t te 1
M2 m; ty by | [ W2
M1 my etz
M2 m; 1 t22
Introduction to HLT oonarzote

Visual Interpretation of i-vectors

. M1 my
H2 my
Hi o M
H2 my
M1 my
M2 my

Introduction to HLT
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itz
a1 t22
itz
21 t22
t1 2

21 t22
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Visual Interpretation of i-vectors
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M1 my t11 42
M2 m; ta1 t22
m ti [t

Hi |2 1] W h2
w.

M2 m; to1 t22 3

M1 my tir [th2

M2 m; to1 t22

Introduction to HLT osnsr20ts

Visual Interpretation of i-vectors

M1 my
M2 mz
Hi || M
H2 my
M1 my
M2 my

Introduction to HLT
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ti [ti2
to1 t22
ti [th2
to1 t22
ti [th2

to1 t22
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Visual Interpretation of i-vectors
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M1 my t11 42
M2 m; ta1 t22
m ti [t
Hi |2 1] W h2
M2 m; to1 t22 W
M1 my tir [th2
M2 m; to1 t22
Introduction to HLT osnsr20ts

Visual Interpretation of i-vectors

M1 my
M2 mz
Mo M
H2 my
. M1 my
H2 mz

Introduction to HLT
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ti [ti2
to1 t22
ti [th2
to1 t22
ti [th2

to1 t22

w
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Visual Interpretation of i-vectors
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f M1 my ti1 42
M2 m2 ta1 t22
m ti [t

[ 1] W h2 w
M2 m; ta1 t22
. M1 my tir [tz
M2 m; ta1 t22

Introduction to HLT osnsr20ts
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* Robustness:

— Limiting the adaptation directions of the UBM makes the model more
robust to noise, reverberation and other artifacts of the signal

- Requires less data than GMM-UBM

— For GMM-UBM, to adapt all the Gaussians the recording needs to be
long enough to contain several frames for all the Gaussians.

— For i-vectors, we don’t need to have data for all the Gaussians.
* Use data from a few Gaussians to estimate w
* Use M=m+Tw to get the positions of the unseen Gaussians
« Compression:
— We summarize a recording of several MB into a small vector.
— The i-vector is a new feature for other machine learning algorithms

Introduction to HLT 00/18/2019

i-vector Calculus
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+ In practice, the i-vector is computed using the Bayes
Theorem:

— We get the posterior distribution for w as

P(XIw)P(w) _ T1, P(x.Im + Tw,Z)N(w[0,])

PO = =575 Z09)

= NW|E[w], ")

— The i-vector is the mean W = E[w] of the posterior distribution
— What is the formula for E[w] and [ ?

Introduction to HLT 00/18/2019

Some more notation ( WISHER G
ACHEY 0 0
v ° Nz(uz) Ire 0 0
0 0 NI,
ﬁl (u) F is the dim of MFCC
Fu-| 2
Fe(w)

Baum-Welch (Sufficient) Statistics ( e

+ Gaussian responsibilities

X ﬂ(‘PL‘ X, | pszc
7,(¢) = P(c | %,,005) = EXACAIP N

E.C_lni})i()?z lw.2)

L
+ Zeroth Order N.(u) = EP(C 1 %,,00p0) = E 7,(c)

t=1 t

F.(u)= ip(c 1%, Bup)” T, = 27,0 ,

t=1 t

+ Centered First order: F(,(u) _ Eyl(c)_ (% -m,)
t

- First Order

where ¢ =1,...,C for each UBM component

Introduction to HLT 00/18/2018

The i-vector Calculus

(e
« Finally the mean of the w Gaussian Posterior is
E[w()] =" w)T'E"F(u)
and covariance matrix
cov(w(u),w(u)) = 1" (u)

where

() =I+T'='Nw)T

Kenny, P., Boulianne, G. and P. Dumouchel. Eigenvoice Modeling with Sparse Training
Data. IEEE Transactions on Speech and Audio Processing, 13 May (3) 2005 : 345-
359.

Introduction to HLT 00/18/2018
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Initialize m and 3 as defined by our UBM covariance
matrices

Pick a desired rank R for the Total Variability Matrix T and
initialize this CF x R matrix randomly.

E-step:
— For each utterance u, calculate the parameters of the posterior
distribution of w(u) using the current estimates of m, T,

M-step:
— Update T solving a set of linear equations in which the w(u)’s play the
role of explanatory variables

« lterate until parameters / data likelihood converges...
Kenny, P., Boulianne, G. and P. Dumouchel. Eigenvoice Modeling with Sparse Training Data. IEEE Transactions on Speech
and Audio Processing, 13 May (3) 2005 : 345-359.

The M-step (2
« In the M-step we maximize the objective function
PIT) 2 Q(T,T,) = ) EllogPCX,, wilD)IPGr, X, Ty)
— Differentiate and isolate T

2Q(TT,) _

37 0=T

— Computing T involves solving one linear equation system per Gaussian
in the GMM.

Introduction to HLT 00/18/2019
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« Low-Dimensional Representation

— Processing i-vectors: compensation and scoring

Introduction to HLT 00/18/2019
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« Cosine scoring

< Wenrolls Wtest >

SCOTE = e
”Wenroll " "Wtest ”

« Channel Compensation techniques
— Linear Discriminant Analysis

— Within Class Covariance Normalization [Hatch2006]
— Nuisance Attribute projection [Campbell 2006]

Introduction to HLT 00/18/2018

Intersession compensation
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* LDA [Dehak 2009,2011]

A is matrix of eigenvectors from S, v = A.S, .v 4

S
S, = 20w, —W)(w, ~ )’

=

S n
s, = E%wa —w)0w] - w,)’

s iml

Introduction to HLT 00/18/2019

Probabilistic Linear discriminant
Analysis (PLDA)

« Probabilistic version of LDA

« i-vector j of class iis decomposed as a sum of several terms

**2, CONTERFORLANGUAGE
). MDSPEDHPROESSG

wij = p+Vy; + €5

- uwis the class-independent mean of all the i-vectors

— Vs low rank matrix defining the inter-class variability space

- y; ~N(0,1) are the coordinates of the speaker in the space defined by V
- €;~N(0,W) were W is the’intla-clagsgovariance.

RN
1 \\_I N

w+Vy,

Introduction to HLT SN -~/ 0911812019
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PLDA Evaluation

+ Evaluation based on Bayesian model comparison
— Likelihood ratio between two hypothesis:
* Probability for enroliment and test i-vectors were generated by the
same speaker (have the same y)
* Probability for enroliment and test i-vectors were generated by
different speakers (have different y)

Pwywalsame) _ JPW[Y)P(Ws |y)PGdy
P(wywa|diff) TP(W[Y)P)dy [ P(W,[Y)P(»)dy

o J N(wy | + Vy, WN(w; |u + Vy, W)N(y|0, dy
& TNGw 7+ Vy, WINGTO, Dy ] NG, T + V3, WINGIO.D) &y

LLR = log

- In practice, the LLR is a quadratic equation:
LLR = w! Aw, + wiBw; + wiBw, + C"w, + C"w, +D

- u, Vand W are trained using EM algorithm

00/18/2019
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Females with blind TV Sy_gtem No LDA/WCCN

2

Colors represent speakers

Cell phone
Landline

21 3now
Mic_CH08

Mic_CH12
Mic_CH13

Mic_CH07

*=room HIVE
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Graph Visualization (lgf NOSPEECH PROCESHG

« Work at exploring behavior of speaker matching for large data set mining
(Zahi Karam)
— Visualization using the Graph Exploration System (GUESS) [Eytan 06]
* Represent segment as a node with connections (edges) to nearest
neighbors (3 NN used)
— NN computed using blind TV system (with and without channel normalization)
« Applied to 5438 utterances from the NIST SRE10 core
— Multiple telephone and microphone channels
+ Absolute locations of nodes not important
 Relative locations of nodes to one another is important:
— The visualization clusters nodes that are highly connected together
« Colors and shapes of nodes used to highlight interesting phenomena

Introduction to HLT 00/18/2019

Females with blind TV Systéﬁn No LDA/WCCN
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Cell phone
Landline

3now

Mic_CH08

Mic_CH12
Mic_CH13

Mic_CHO07

Mic_CHO05
high VE

B= low VE

®=normal VE
4=room LDC
*=room HIVE

Roadmap

— X-vectors
+ Applications
— Speaker verification

Introduction to HLT
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Females with full blind TV system
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Motivation:
- Can we improve performance by using non-linear models?

— DNN trained to discriminate between speakers to produce better
embeddings.

Objective: M
_ The objective function is cross-entropy L=~ Z log P (yi = 1iX)
i=1

— At the input we have feature sequences of variable length (MFCCs, Mel
filter-banks, Bottleneck features)
— The output of the DNN is the posterior probability for the speaker labels.
- Requires more training data than i-vectors.
*  Otherwise it over-fits to training speakers

Augmenting training data with noise and reverberation improves

Introduction to HLT 00/18/2018

x-Vectors

This DNN has three parts:

- Encoder: extracts frame level
representations

- Pooling: pooling layer that
computes mean and standard
deviation.

- Classification: predicts posterior
probabilities for the target
speakers

Once trained:
- The softmax layer is removed.

- Embeddings are extracted from
the layers after the pooling layer.

— Typically x-vectors are extracted
from the first layer after pooling
before applying the non-linear
activation function

Introduction to HLT

K CENTER FOR LANGLAGE
}41) AOSPEECHPROCESSG

POspks; | X%, %)
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30000

Frame level
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TDNN x-Vector

I
+ X-vector inside P(s|X;)
— TDNN encoder
*TDNN is 1-d dilated convolutional neural network Dense

* Has the ability to capture features in a wider window 1

as it gets deeper Dense [~ Emb
* Dilation makes the temporal context to grow faster

as the information travels through the layers of the

network !
I
3
py [
w l I'T
mEE-. me
' TT 12D ’\m
{ Y S e 1

oo M M s
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F-TDNN x-Vector
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— Factorized TDNN with skip connections
« Factorizes the weight matrix of each L PUX,)

TDNN layer into the product of two low-  (softmax )
rank matrices.
— Reduces network parameters

First factor constrained to be semi-

orthogonal
— Matrix rows orthogonal between i
them

— Assures that neurons in the
bottleneck don’t learn redundant
information.

Skip-connections

— Between bottleneck representations

— Representations are concatenated
instead of added

— Allows to make network deeper by
Introduction 1o AMEVIALiNg vanishing gradients

N

TDNN

!

00/18/2019

**, CENTERFOR LANGUAGE
ResNet x-Vector ( MDSPEECPROCESING
* Resnet

— TDNN encoders are replaced by residual networks
(ResNet)

— The MFCCs are replaced by log-Mel filter banks
— ResNet are two-dimensional convolutions (2D-CNN)

— The residual block composed of two 2D
convolutions separated by a ReLU

— The input to the block is added to the output
x

. "%, CENTERFORLANGUAGE
x-Vector Temporal Pooling ¥ MDSPEECHPROCESSG
+ Pooling methods
* Mean+Standard Deviation:
+ Standard method computes mean and stddev of frame level representations
over time
* Learnable dictionary encoder (LDE)
« Frame level representations are modeled as a GMM (Similar to i-vectors)
+ The probability that frame t belongs to Gaussian component ¢ is
exp(—se [[xe — pell® + be)
S exp(—se [lxe — pell* + be)

+ Compute one embedding per component by averaging the frames of that

Wee =

component
+ Concatenate component embeddings to form a super-vector
S wee(xe — pre)
==l 2t TP =1, C — (aT T\T
SR s e=(el....el)

* Multi-head Attention
« Similar to LDE but weights are normalized to sum up to one over time.
« Attends to the most important frames in the sequence for cluster ¢

Fx) X
Identity
Fx) +x
Introdution to HLT —
**2, CONTERFORLANGUAGE
X-vector ). MDSPEECH PRICESSNG
- Backend:
- LDA,

- Centering, whitening
- length normalization
— PLDA scoring

- Same back-end as the one used for i-vectors.

Wi = exp(—se [|xe — pel])
© S exp(—se e — pel)
Introduction to HLT osrnsr01s
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Discussion ), WDSPEECHPROCESSNG

Low dimensional representation simplifies life

i/x-Vector transforms a sequence of features into a unique
vector

Easy way to compare between sequences of features with
different duration

Classical pattern recognition approaches like LDA, PLDA or
SVM can be used to compare i/x-vectors

X-vectors are now the state-of-the-art.

Introduction to HLT 00/18/2019
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« Applications
— Speaker verification

Introduction to HLT 00/18/2018
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Speaker Verification
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e . "%, COERFIRLAGUGE
Speaker Verification Problem ( MDSPEECPROCESING

B -

Paola
System\
ﬁ % no
Imposter
Introduction to HLT 09/1812019

e s "%, COERFIRLAGUGE
Speaker Verification (\% MOSPEEDH PROCESSNG

Speaker Verification: Accepts or rejects a user based on his
speech signal.

» Input:

» Speech signal X e

» Claimed identity i Paola

d accept  ¢(X,i)>T;
reject otherwise

¢(X.i) is a confidence measure

» Output:

Introduction to HLT 00/18/2019
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Score Distribution (L% AND SPEECH PROCESSING

<~ Binary classifier with the
following confidence Imposter Target
measures (scores). speaker | speaker
<~ The rightmost Gaussian
belongs to the target
speaker.

Threshold

< The leftmost Gaussian
belongs to the imposter
speaker. score

. - P(X.i)

<~ Key point: a decision

threshold.

Introduction to HLT 00/18/2018
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Speaker Verification: What is needed?@g?; MDSPEECHPROCESSG

» Each accredited speaker has its own model, known as target
model, 4, , prototype of his/her speech.

ugm . |A

» And an imposter model I, is the impostor’s prototype. When all
the imposters share the same model (they are “tied”), called:
UBM Universal Background Model.

Introduction to HLT 00/18/2019
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Log-Likelihood Ratio (L% AOSPEEGH PROCESSNG

» The likelihood ratio provides a tool to perform a statistical
decision (score function in log domain) :

> 7 accept \;

0(X.9) = log (p (X|A) ~ log (p (X[) 27 "t ?

<

Imposter Target
speaker | speaker
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Hypothesis Testing

"%, CENTERFORLANGUAGE
). MDSPEECHPRICESSNG

Hypotheses Testing is a suitable framework for detection
problems:

»> H0, the null hypothesis, accepts the identity of the speaker
as legitimate.

)
%

» H1, the alternative hypothesis, rejects the user (imposter).

=2 O

What if something goes wrong in the system?

Introduction to HLT 00/18/2019

Types of Errors
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Imposter Target
speaker i speaker
EEAR

score
The main goal for speaker verification must be to minimize
those errors.

The tradeoff between the errors depend on the application.

Introduction to HLT 00/18/2019
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ROC vs DET curves ( ANDSPEECHPROCESSING
T
el speaker @ True positive
@ True Negative
O Miss, false rejected
O False Accepted

1
1
DET curve
TP ROC curve FR
[
0

B s
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Types of Errors
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) AND SPEECH PROCESSING
For a classifier, there are two sources of statistical errors:

» If HO is rejected when HO is actually from the speaker (reject a
legitimate user), false negative, miss or false rejected.

@

» If it fails to reject H1, when H1 is false (accepts an impostor),
false positive (FP), false alarm or false accepted.

2

Introduction to HLT

00/18/2019
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Speaker verification system performances ( ANDSPEECH PROCESSNG

Target speaker

= ?
scores 17} - yes
< no?

+ Detcurve

Speakor Datocton Perimarce

« False acceptance and rejection Rates

_ Number of False Acceptance

FA T .
*" Number of impostors accesses

[

_ Number of False Rejection
8" Number of target accesses

- EER - MinDCF LR o T B
R, =R DCF =Cpy. Py Ry +Cp, P,

FR rarget imposteur Ry
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Imposter EER Target
speaker speaker

FR FR

0

FA 1 0 FA 1

FA
ROC curve DET curve DET curve
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i-vector System ( ADSPEECHPROCESING GMM i-vector vs DNN i-vector ( MDSPEECPROCESING

- NIST SRE10, five conditions, females

+ 2048 component UBM, 600 dimensional i-vector
— ™ v Channel ) .
Training .“ - i Analysis |mfpp| Effets + DNN trained on 250 hours of Fisher
{ e » 7| ‘training estimation
Condition 1 (int-int same mic.) Condition 2 (int-int diff. mic.)
-
minDCF10 | minDCF08 | EER (%) | minDCF10 | minDCFo8 | EER (%)
Usm GMM-UBM | 0.183 0.051 1.30 0311 0.088 1.94
DNN-UBM | o.142 0032 077 0205 0053 1.32
E— Condition 3 (int-tel) Condition 4 (int-mic)
aum Weld :
Enroliment, MECO Statistics el @lirxnc) minDCF10 | minDCF08 | EER (%) | minDCF10 | minDCF08 | EER (%)
> N alion extraction Normalize
GMM-UBM | 0316 0091 207 0223 0050 1.00
Cosine DNN-UBM | 0.204 0049 1.18 0.130 0024 053
distance/ [ Decision
4 PLDALLR Condition 5 (tel-tel)
st T Baum Welch - o — ’ minDCF10 | minDCF08 | EER (%)
> jon[ | Statistics k| ¢ iraction [P Normalize GMM-UBM | 0.390 0.110 221
DNN-UBM |  0.209 0056 121
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X-vectors ( AND SPEECH PROCESSING X-vectors ( AND SPEECH PROCESSING

+ Some results...

System SITW EVALCORE  SITW EVAL CORE-MULTI _ SREIS DEV VAST SREIS EVAL VAST
Systems SREI8 DEV CMN2 SRE18 EVAL CMN2 EER MinCp ActCp EER MinCp AaCp EER MinCp ActCp EER MinCp AcCp
y N 16 kHz systems
EER  MinCp ActCp EER MinCp ActCp BNF-i-vector 5770257 0262 602 026 026 1152 0185 0222 1746 0508 0571
N TDNN(8.5M) 34 0185 0188 38 0191 0191 37 0337 0424 1206 0468 0578
GMM-i-vector 1037 0.664 0.685 1185 0.723 0.725 E-TDNN(10M) 274 0162 0165 32 0171 0.172 37 0305 0305 1302 0442 0527
BNF-i-vector 1051 0639 0657 1169 071 0712 F-TDNN(9M) 239 0144 015 279 0153 0153 453 0309 0383 1175 0412 0508
F-TDNN(10M) 237 0435 0138 286 0145 0146 37 0337 042 1079 0403 0503
TDNN(8.5M)-srel6 72 0.505 0.51 7.93 0515 0518 E-TDNN(11M) 205 0137 014 257 0145 0147 37 0305 0387 LI 0409 0487
TDNN(8.5M) 5.76 0.384 0.392 6.68 0.446 0.447 E-TDNN(17M) 189 0124 0126 233 0135 0.137 7 037 0498 1206 0388 0474
E-TDNN(10M) 588 0392 0398 597 0409 0.41 ResNet(8M) 301 0187 0091 347 0198 0198 37 0412 0498 1143 0464 0554
F-TDNN(11M) 496  0.326 0.33 53 0.37 0.371 -i-vect 822 0384 0393 867 038 0387 1852 0486 0568 2032 0543 075
F-TDNN(17M) 5.1 0.355 0.372 495 0.346 0.349 BNF-i-vector 78 0353 0365 842 0352 0354 1481 0412 0568 179 0533 0638
R . ~ TDNN(8SM)-srel6 521 0278 0284 56 0287 0287  ILIL 03 0691 1333 0475 0636
ResNet(8M)-MHAt#t-SPLDA 546 0.326 0.34 564 0392 0395 TDNN(8.5M) 358 0197 0202 393 0206 0207 741 0296 0535 1293 0431 059
ResNet(8M)-MHAtt-DPLDA  5.64 0.319 0337 681 0.499 0.524 E-TDNN(10M) 29 0172 0175 329 0183 0183 741 0337 0461 126 041 0561
F-TDNN(I1M) 284 0158 0163 318 0165 0166 741 0222 0461 1206 0385 052
F-TDNN(17M) 246 0148 051 283 0155 0156 453 0259 0383 1L75 0377 0514
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