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Fred Jones was worn out from 
caring for his often screaming 
and crying wife during the day 
but he couldn’t sleep at night 
for fear that she in a stupor 
from the drugs that didn’t ease 
the pain would set the house 
ablaze with a cigarette



• 46 words, 46! permutations of those words, the vast 
majority of them ungrammatical and meaningless

• How is that we can
– process and understand this sentence?
– discriminate it from the sea of ungrammatical 

permutations it floats in?
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Today we will cover
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Goals for today
• After today, you should be able to

– Give a working definition of syntax and describe how 
linguists think about it

– Describe two well-known grammar formalisms and 
projects supporting them

– Discuss issues related to universal language features
– Describe the formal language hierarchy
– Describe algorithms for parsing the two grammar 

formalisms
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Linguistic fields of study
• Phonetics: sounds
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Linguistic fields of study
• Phonetics: sounds
• Phonology: sound systems
• Morphology: internal word structure
• Syntax: external word structure (sentences)
• Semantics: sentence meaning
• Pragmatics: contextualized meaning and communicative 

goals
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• Why does this matter?
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Aside
• Much of our focus is on written language, but language is 

first and foremost spoken
• Why does this matter?
• Which of these is easier for a computer to work with?

– (written) Dipanjan asked a question
– (spoken) Dipanjan, uh, he, uh, um, was wondering, uh, 

he had a question

9
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What is syntax?
• A set of constraints on the possible sentences in the 

language
– *A set of constraint on the possible sentence.
– *Dipanjan had [a] question.
– *You are on class.

• At a coarse level, we can divide all possible sequences of 
words into two groups: valid and invalid (or grammatical 
and ungrammatical)

11



Human judgments
• How do we know what’s in and out? We simply ask 

humans
• But how do humans know?

– Bad idea: big lists
– Better idea: grammars

12



A hierarchical view
• A grammar is a finite set of rules licensing a (possibly 

infinite) number of strings
• e.g., some rules

– [sentence] → [subject] [predicate]
– [subject] → [noun phrase]
– [noun phrase] → [determiner]? [adjective]* [noun]
– [predicate] → [verb phrase] [adjunct]

• Rules are phrasal or terminal
– Phrasal rules form constituents in a tree
– Terminal rules are parts of speech and produce words

13



Example
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• No general agreement about the exact set of parts of 

speech
• Penn Treebank tagset examples
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POS Examples
• No general agreement about the exact set of parts of 

speech
• Penn Treebank tagset examples

– nouns: NN, NNS, NNP, NNPS
– adverbs: RB, RBR, RBS, RP
– verbs: VB, VBD, VBG, VBN, VBP, VBZ
– (Here, different tags are used to capture the small bit of 

morphology present in English)
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Parts of Speech (POS)
• Three definitions of noun
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Parts of Speech (POS)
• Three definitions of noun

16

Grammar school  
(“metaphysical”) 
a person, place, 
thing, or idea

Functional  
 
the set of words 
that serve as 
arguments to 
verbs

verb

noun adverb

adjective

Distributional  
 
the set of words 
that have the 
same distribution 
as other nouns

{I,you,he} saw the 
{bird,cat,dog}.



Phrases and Constituents
• Longer sequences of words can perform the same 

function as individual parts of speech:
– I saw [aDT kidN]NP

– I saw [a kid playing basketball]NP

– I saw [a kid playing basketball alone on the court]NP

• This gives rise to the idea of a phrasal constituent, which 
functions as a unit in relation to the rest of the sentence

17



Constituent tests
• How do you know if a phrase functions as a constituent?
• A few tests

– Coordination
∎ Kim [read a book], [gave it to Sandy], and [left].

– Substitution with a word
∎ Kim read [a very interesting book about grammar].
∎ Kim read [it].

– See Bender #51

18



Heads, arguments, & adjuncts
• Syntax is about the relationships among words and 

phrases in a sentence
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Heads, arguments, & adjuncts
• Syntax is about the relationships among words and 

phrases in a sentence
• Each constituent has its own internal structure, as well as 

relationship with words and constituents outside it
• Hierarchical structure among constituents

– Top down, each constituent has a head
– Heads have (phrasal) dependents
– Dependents can be required (arguments) or optional 

(adjuncts)
– A head word often controls the structure of its modifiers

19



Heads
• Head: “the sub-constituent which determines the internal 

structure and external distribution of the constituent as a 
whole” (Bender #52)

• Examples
– sentence: (usually) the main verb
– noun phrase: (usually) the main noun
– verb phrase: (usually) the active verb

20



Dependents: Arguments & adjuncts
• Dependents of a head:

– Arguments: selected/licensed by the head and 
complete the meaning

– Adjuncts: not selected and refine the meaning

21



Constituent structure
• The head often constrains the internal structure of a constituent 
• Examples

– verb
∎ [Kim]ARGUMENT is [ready]ADJUNCT.

– adjective
∎ Kim is [readyADJ [to make a pizza]V].
∎ * Kim is [tiredADJ [to make a pizza]V].

– noun
∎ [The [red]ADJ ball]
∎ * [The [red]ADJ ball [the stick]N]
∎ [The [red]ADJ ball [on top of the stick]PP]

22



More examples
– Kim planned [to give Sandy books].
– * Kim planned [to give Sandy].
– Kim planned [to give books].
– * Kim planned [to see Sandy books].
– Kim [would [give Sandy books]].
– Pat [helped [Kim give Sandy books]].
– * [[Give Sandy books] [surprised Kim]].

23



Summary

24

what is 
syntax?

A finite set of rules licensing 
an infinite number of strings

The rules specify how words and 
phrases relate to one another in a 
hierarchical manner

No one knows what the actual rules 
are, but there is consensus that the 
rules must exist!



Outline
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Treebanks
• Collections of natural text that are annotated according to 

a particular syntactic theory
– Usually created by linguistic experts
– Ideally as large as possible
– Theories are usually coarsely divided into constituent/

phrase or dependency structure

26



Formalisms
• Phrase-structure and dependency grammars

– Phrase-structure: encodes the phrasal components of 
language

– Dependency grammars encode the relationships 
between words

27



Penn Treebank (1993)
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The Penn Treebank
• Syntactic annotation of a million words of the 1989 Wall 

Street Journal, plus other corpora (released in 1993)
– (Trivia: People often discuss “The Penn Treebank” when 

the mean the WSJ portion of it)
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The Penn Treebank
• Syntactic annotation of a million words of the 1989 Wall 

Street Journal, plus other corpora (released in 1993)
– (Trivia: People often discuss “The Penn Treebank” when 

the mean the WSJ portion of it)
• Contains 74 total tags: 36 parts of speech, 7 punctuation 

tags, and 31 phrasal constituent tags, plus some relation 
markings

• Was the foundation for an entire field of research and 
applications for over twenty years
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Context Free Grammar
• Nonterminals are rewritten 

based on the lefthand side alone
• Algorithm:

– Start with TOP
– For each leaf nonterminal:

∎ Sample a rule from the set 
of rules for that nonterminal

∎ Replace it with
∎ Recurse

• Terminates when there are no 
more nonterminals

31
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context-sensitive 
grammar

context free grammar

finite state machine

Chomsky formal 
language hierarchy
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TOP TOP → S
S S → VP
VP VP → (VB→halt) NP PP
halt NP PP NP → (DT The) 

     (JJ→market-jarring)  
     (CD→25)

halt The market-jarring 25 PP PP → (IN→at) NP
halt The market-jarring 25 at NP NP → (DT→the) 
(NN→bond)
halt The market-jarring 25 at the bond
 
(TOP (S (VP (VB halt) (NP (DT The) (JJ market-jarring) (CD 
25)) (PP (IN at) (NP (DT the) (NN bond))))))
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A problem with the Penn Treebank
• One language, English

– Represents a very narrow typology (e.g., little 
morphology)

– Consider the tags we looked at before
∎ nouns: NN, NNS, NNP, NNPS
∎ adverbs: RB, RBR, RBS, RP
∎ verbs: VB, VBD, VBG, VBN, VBP, VBZ

– How well will these generalize to other languages?
•

33



Dependency Treebanks (2012)

• Dependency trees annotated across languages in a 
consistent manner

34https://universaldependencies.org



Example
• Instead of encoding phrase structure, it encodes 

dependencies between words
• Often more directly encodes information we care about 

(i.e., who did what to whom)

35



Guiding principles
• Works for individual languages
• Suitable across languages
• Easy to use when annotating
• Easy to parse quickly
• Understandable to laypeople
• Usable by downstream tasks

36https://universaldependencies.org/introduction.html



Universal Dependencies
• Parts of speech

– open class
∎ ADJ, ADV, INTJ, NOUN, PROPN, VERB

– closed class
∎ ADP, AUX, CCONJ, DET, NUM, PART, PRON, 

SCONJ
– other

∎ PUNCT, SYM, X

37



Where do grammars come from?

38https://www.shutterstock.com/image-vector/stork-carrying-baby-boy-133823486



Where do grammars come from?
• Treebanks!
• Given a treebank, and a formalism, we can learn statistics 

by counting over the annotated instances

39



Probabilities
• For example, a context-free grammar

– S → NP , NP VP . [0.002]
– NP → NNP NNP [0.037]
– , → , [0.999]
– NP → * [X]
– VP → VB NP [0.057]
– NP → PRP$ NN [0.008]
– . → . [0.987] 

•
Probabilities given as P(X) = ∑

X′ ∈N

P(X)
P(X′ )

40



Summary
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Treebanks are annotated according to a particular 
theory or formalism



Outline

42

what is 
syntax?

where do  
grammars 

come from?

how can a 
computer find 
a sentence’s 

structure?



Formal Language Theory
• Consider the claims underlying our grammar-based view 

of language
1. Sentences are either in or out of a language
2. Sentences have an invisible hidden structure
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Formal Language Theory
• Consider the claims underlying our grammar-based view 

of language
1. Sentences are either in or out of a language
2. Sentences have an invisible hidden structure

• We can generalize this discussion to make a connection 
between natural and other kinds of languages

• Consider, for example, computer programs
– They either compile or don’t compile
– Their structure determines their interpretation

43
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“alphabet” is English words), or the set of valid Python 
programs

Σ
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Formal Language Theory
• Generalization: define a language to be a set of strings 

under some alphabet, 
– e.g., the set of valid English sentences (where the 

“alphabet” is English words), or the set of valid Python 
programs

Σ

• Formal Language Theory provides a common framework 
for studying properties of these languages, e.g.,
– Is this file a valid C++ program? A valid Czech 

sentence?
– What is the structure?
– How hard / time-consuming is it to answer these 

questions?
44



The Chomsky Hierarchy
• Definitions: given

– an alphabet ( ), 
– terminal symbols, e.g., 
– nonterminal symbols, e.g., {S, N, A, B}
– , , , strings of terminals and/or nonterminals

Σ
a ∈ Σ

α β γ

45

Type Rules Name Recognized by

3 Regular Regular 
expressions

2 Context-free Pushdown 
automata

1 Context-sensitive Linear-bounded 
Turing machine

0 Recursively 
enumerable Turing Machines

A → aB

A → α
A  → α β αγβ

A  → α β γ



Problems
• What is the value?  
 
(5 + 7) * 11

46

• Who did what to whom?  
 
Him the Almighty hurled 
 
 
 
 
Dipanjan taught Johnmark

If we have a grammar, we can answer these with parsing



Parsing
• If the grammar has certain properties (Type 2 or 3), we 

can efficiently answer two questions with a parser
– Is the sentence in the language of the parser?
– What is the structure above that sentence?

47



Algorithms
• The CKY algorithm for parsing with constituency 

grammars
• Transition-based parsing with dependency grammars

48



Chart parsing for constituency grammars

• Maintains a chart of nonterminals spanning words, e.g.,
– NP over words 1..4 and 2..5
– VP over words 4..6 and 4..8
– etc

49



Chart parsing for constituency grammars

500 1 2 3 4 5
Time flies like an arrow

0NN1 1NN2,1VB2 2VB3,2IN3 3DT4 4NN5

3NP50NP1

2PP5, 2VP50NP2

1VP5

0S5



CKY algorithm
• How do we produce this chart? Cocke-Younger-Kasami (CYK/

CKY)
• Basic idea is to apply rules in a bottom-up fashion, applying all 

rules, and (recursively) building larger constituents from 
smaller ones

• Input: sentence of length N
for width in 2..N

for begin i in 1..{N - width}
j = i + width

for split k in {i + 1}..{j - 1}
for all rules A → B C

create iAj if iBk and kCj
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CKY algorithm

520 1 2 3 4 5
Time flies like an arrow

NN NN,VB VB,IN DT NN
NP→DT NNNP→NN

PP→2IN3 3NP5NP→NN NN

VP→VB PP

VP→2VB3 3NP5

S → 0NP1 1VP5

S → 0NP2 2VP5



CKY algorithm
• Termination: is there a chart entry at 0SN?

– ✓ string is in the language
– Obtain the structure by following backpointers
– Not covered: adding probabilities to rules to resolve 

amgibuities
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Dependency parsing
• The situation is different in many ways

– We’re no longer building labeled constituents
– Instead, we’re searching for word dependencies
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Dependency parsing
• The situation is different in many ways

– We’re no longer building labeled constituents
– Instead, we’re searching for word dependencies

• This is accomplished by a stack-based transition parser
– Repeatedly (a) shift a word onto the stack or (b) create 

a LEFT or RIGHT dependency from the top two words
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step stack words action relation

0 [] [human,langs,are,hard,to,parse] SHIFT

1 [human] [langs,are,hard,to,parse] SHIFT

2 [human,langs] [are,hard,to,parse] LEFTARC human←langs

3 [langs] [are,hard,to,parse] SHIFT

4 [langs,are] [hard,to,parse] LEFTARC langs←are

5 [are] [hard,to,parse] SHIFT

6 [are,hard] [to,parse] SHIFT

7 [are,hard,to] [parse] SHIFT

8 [are,hard,to,parse] [] LEFTARC to←parse

9 [are,hard,parse] [] RIGHTARC hard→parse

10 [are,hard] [] RIGHTARC are→hard

11 [are] [] RIGHTARC ROOT→are

12 [] [] DONE

ROOT human languages are hard to parse



Unanswered questions
• How do we score rules (for constituency parsing) and 

actions and relations (for dependency parsing)?
– Probabilities can be read from Treebanks
– Actions can be informed by feature selection

• How do we know the right path to take?
– We can try multiple paths using beam search
– We get lots of savings via dynamic programming
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Summary
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how can a 
computer find 
a sentence’s 

structure?

For context-free grammars, 
the (weighted) CKY algorithm 
can be used to find the most 
probable (maximum a posteriori) 
tree given a certain grammar

For dependency grammars, the 
most popular approach is a variation 
of transition-based parsers



Resources
• Demos:

– AllenNLP: https://demo.allennlp.org
– Berkeley Neural Parser: https://parser.kitaev.io
– Spacy dependency parser: https://explosion.ai/demos/

displacy
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structure?

the study of the 
internal structure of 

sentences (in natural 
and synthetic 
languages)

they are created by 
linguists, usually 
under particular 

grammatical theories

train a grammar from 
a treebank and then 
apply that grammar 
to new sentences 

using parsing 
algorithms


