
SYNTAX

Matt Post
IntroHLT class
10 September 2020

and stupor his the Fred with
pain from ease couldn’t would
a set he cigarette out the that
for in wife Jones was during
caring a often drugs house but
screaming the crying at for
didn’t fear worn sleep ablaze
day the from that she night

Fred Jones was worn out from
caring for his often screaming
and crying wife during the day
but he couldn’t sleep at night
for fear that she in a stupor
from the drugs that didn’t ease
the pain would set the house
ablaze with a cigarette

• 46 words, 46! permutations of those words, the vast
majority of them ungrammatical and meaningless

• How is that we can
– process and understand this sentence?
– discriminate it from the sea of ungrammatical

permutations it floats in?

4

Today we will cover

5

what is
syntax?

where do
grammars

come from?

how can a
computer find
a sentence’s

structure?

Linguistics

Computer Science

Goals for today
• After today, you should be able to

– Give a working definition of syntax and describe how
linguists think about it

– Describe two well-known grammar formalisms and
projects supporting them

– Discuss issues related to universal language features
– Describe the formal language hierarchy
– Describe algorithms for parsing the two grammar

formalisms

6

Outline

7

what is
syntax?

where do
grammars

come from?

how can a
computer find
a sentence’s

structure?

Linguistic fields of study
• Phonetics: sounds

8

Linguistic fields of study
• Phonetics: sounds
• Phonology: sound systems

8

Linguistic fields of study
• Phonetics: sounds
• Phonology: sound systems
• Morphology: internal word structure

8

Linguistic fields of study
• Phonetics: sounds
• Phonology: sound systems
• Morphology: internal word structure
• Syntax: external word structure (sentences)

8

Linguistic fields of study
• Phonetics: sounds
• Phonology: sound systems
• Morphology: internal word structure
• Syntax: external word structure (sentences)
• Semantics: sentence meaning

8

Linguistic fields of study
• Phonetics: sounds
• Phonology: sound systems
• Morphology: internal word structure
• Syntax: external word structure (sentences)
• Semantics: sentence meaning
• Pragmatics: contextualized meaning and communicative

goals

8

Aside
• Much of our focus is on written language, but language is

first and foremost spoken
• Why does this matter?

9

Aside
• Much of our focus is on written language, but language is

first and foremost spoken
• Why does this matter?
• Which of these is easier for a computer to work with?

9

Aside
• Much of our focus is on written language, but language is

first and foremost spoken
• Why does this matter?
• Which of these is easier for a computer to work with?

– (written) Dipanjan asked a question

9

Aside
• Much of our focus is on written language, but language is

first and foremost spoken
• Why does this matter?
• Which of these is easier for a computer to work with?

– (written) Dipanjan asked a question
– (spoken) Dipanjan, uh, he, uh, um, was wondering, uh,

he had a question

9

Today’s focus

10

Morgan Claypool Publishers&
SYNTHESIS LECTURES ON
HUMAN LANGUAGE TECHNOLOGIES

w w w . m o r g a n c l a y p o o l . c o m

Series Editor: Graeme Hirst, University of Toronto
CM& Morgan Claypool Publishers&

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com

SYNTHESIS LECTURES ON
HUMAN LANGUAGE TECHNOLOGIES

Graeme Hirst, Series Editor

ISBN: 978-1-62705-011-1

9 781627 050111

90000

Series ISSN: 1947-4040 BENDER
LINGUISTIC FUNDAM

ENTALS FOR NATURAL LANGUAGE PROCESSING
M

O
R
G
A
N

&
C
L
A
Y
P
O

O
L

Linguistic Fundamentals for
Natural Language Processing
100 Essentials from Morphology and Syntax
Emily M. Bender, University of Washington
Many NLP tasks have at their core a subtask of extracting the dependencies—who did what to
whom—from natural language sentences. This task can be understood as the inverse of the problem
solved in different ways by diverse human languages, namely, how to indicate the relationship between
different parts of a sentence. Understanding how languages solve the problem can be extremely useful
in both feature design and error analysis in the application of machine learning to NLP. Likewise,
understanding cross-linguistic variation can be important for the design of MT systems and other
multilingual applications. The purpose of this book is to present in a succinct and accessible fashion
information about the morphological and syntactic structure of human languages that can be useful
in creating more linguistically sophisticated, more language-independent, and thus more successful
NLP systems.

Linguistic Fundamentals
for Natural Language
Processing
100 Essentials from
Morphology and Syntax

Emily M. Bender

Morgan Claypool Publishers&
SYNTHESIS LECTURES ON
HUMAN LANGUAGE TECHNOLOGIES

w w w . m o r g a n c l a y p o o l . c o m

Series Editor: Graeme Hirst, University of Toronto
CM& Morgan Claypool Publishers&

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com

SYNTHESIS LECTURES ON
HUMAN LANGUAGE TECHNOLOGIES

Graeme Hirst, Series Editor

ISBN: 978-1-62705-011-1

9 781627 050111

90000

Series ISSN: 1947-4040 BENDER
LINGUISTIC FUNDAM

ENTALS FOR NATURAL LANGUAGE PROCESSING
M

O
R
G
A
N

&
C
L
A
Y
P
O

O
L

Linguistic Fundamentals for
Natural Language Processing
100 Essentials from Morphology and Syntax
Emily M. Bender, University of Washington
Many NLP tasks have at their core a subtask of extracting the dependencies—who did what to
whom—from natural language sentences. This task can be understood as the inverse of the problem
solved in different ways by diverse human languages, namely, how to indicate the relationship between
different parts of a sentence. Understanding how languages solve the problem can be extremely useful
in both feature design and error analysis in the application of machine learning to NLP. Likewise,
understanding cross-linguistic variation can be important for the design of MT systems and other
multilingual applications. The purpose of this book is to present in a succinct and accessible fashion
information about the morphological and syntactic structure of human languages that can be useful
in creating more linguistically sophisticated, more language-independent, and thus more successful
NLP systems.

Linguistic Fundamentals
for Natural Language
Processing
100 Essentials from
Morphology and Syntax

Emily M. Bender

Morgan Claypool Publishers&
SYNTHESIS LECTURES ON
HUMAN LANGUAGE TECHNOLOGIES

w w w . m o r g a n c l a y p o o l . c o m

Series Editor: Graeme Hirst, University of Toronto
CM& Morgan Claypool Publishers&

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com

SYNTHESIS LECTURES ON
HUMAN LANGUAGE TECHNOLOGIES

Graeme Hirst, Series Editor

ISBN: 978-1-62705-011-1

9 781627 050111

90000

Series ISSN: 1947-4040 BENDER
LINGUISTIC FUNDAM

ENTALS FOR NATURAL LANGUAGE PROCESSING
M

O
R
G
A
N

&
C
L
A
Y
P
O

O
L

Linguistic Fundamentals for
Natural Language Processing
100 Essentials from Morphology and Syntax
Emily M. Bender, University of Washington
Many NLP tasks have at their core a subtask of extracting the dependencies—who did what to
whom—from natural language sentences. This task can be understood as the inverse of the problem
solved in different ways by diverse human languages, namely, how to indicate the relationship between
different parts of a sentence. Understanding how languages solve the problem can be extremely useful
in both feature design and error analysis in the application of machine learning to NLP. Likewise,
understanding cross-linguistic variation can be important for the design of MT systems and other
multilingual applications. The purpose of this book is to present in a succinct and accessible fashion
information about the morphological and syntactic structure of human languages that can be useful
in creating more linguistically sophisticated, more language-independent, and thus more successful
NLP systems.

Linguistic Fundamentals
for Natural Language
Processing
100 Essentials from
Morphology and Syntax

Emily M. Bender

What is syntax?
• A set of constraints on the possible sentences in the

language
– *A set of constraint on the possible sentence.
– *Dipanjan had [a] question.
– *You are on class.

• At a coarse level, we can divide all possible sequences of
words into two groups: valid and invalid (or grammatical
and ungrammatical)

11

Human judgments
• How do we know what’s in and out? We simply ask

humans
• But how do humans know?

– Bad idea: big lists
– Better idea: grammars

12

A hierarchical view
• A grammar is a finite set of rules licensing a (possibly

infinite) number of strings
• e.g., some rules

– [sentence] → [subject] [predicate]
– [subject] → [noun phrase]
– [noun phrase] → [determiner]? [adjective]* [noun]
– [predicate] → [verb phrase] [adjunct]

• Rules are phrasal or terminal
– Phrasal rules form constituents in a tree
– Terminal rules are parts of speech and produce words

13

Example

14

POS Examples
• No general agreement about the exact set of parts of

speech
• Penn Treebank tagset examples

15

POS Examples
• No general agreement about the exact set of parts of

speech
• Penn Treebank tagset examples

– nouns: NN, NNS, NNP, NNPS

15

POS Examples
• No general agreement about the exact set of parts of

speech
• Penn Treebank tagset examples

– nouns: NN, NNS, NNP, NNPS
– adverbs: RB, RBR, RBS, RP

15

POS Examples
• No general agreement about the exact set of parts of

speech
• Penn Treebank tagset examples

– nouns: NN, NNS, NNP, NNPS
– adverbs: RB, RBR, RBS, RP
– verbs: VB, VBD, VBG, VBN, VBP, VBZ

15

POS Examples
• No general agreement about the exact set of parts of

speech
• Penn Treebank tagset examples

– nouns: NN, NNS, NNP, NNPS
– adverbs: RB, RBR, RBS, RP
– verbs: VB, VBD, VBG, VBN, VBP, VBZ
– (Here, different tags are used to capture the small bit of

morphology present in English)

15

Parts of Speech (POS)
• Three definitions of noun

16

Grammar school  
(“metaphysical”) 
a person, place,
thing, or idea

Parts of Speech (POS)
• Three definitions of noun

16

Grammar school  
(“metaphysical”) 
a person, place,
thing, or idea

Distributional  
 
the set of words
that have the
same distribution
as other nouns

{I,you,he} saw the
{bird,cat,dog}.

Parts of Speech (POS)
• Three definitions of noun

16

Grammar school  
(“metaphysical”) 
a person, place,
thing, or idea

Functional  
 
the set of words
that serve as
arguments to
verbs

verb

noun adverb

adjective

Distributional  
 
the set of words
that have the
same distribution
as other nouns

{I,you,he} saw the
{bird,cat,dog}.

Phrases and Constituents
• Longer sequences of words can perform the same

function as individual parts of speech:
– I saw [aDT kidN]NP

– I saw [a kid playing basketball]NP

– I saw [a kid playing basketball alone on the court]NP

• This gives rise to the idea of a phrasal constituent, which
functions as a unit in relation to the rest of the sentence

17

Constituent tests
• How do you know if a phrase functions as a constituent?
• A few tests

– Coordination
∎ Kim [read a book], [gave it to Sandy], and [left].

– Substitution with a word
∎ Kim read [a very interesting book about grammar].
∎ Kim read [it].

– See Bender #51

18

Heads, arguments, & adjuncts
• Syntax is about the relationships among words and

phrases in a sentence

19

Heads, arguments, & adjuncts
• Syntax is about the relationships among words and

phrases in a sentence
• Each constituent has its own internal structure, as well as

relationship with words and constituents outside it

19

Heads, arguments, & adjuncts
• Syntax is about the relationships among words and

phrases in a sentence
• Each constituent has its own internal structure, as well as

relationship with words and constituents outside it
• Hierarchical structure among constituents

– Top down, each constituent has a head
– Heads have (phrasal) dependents
– Dependents can be required (arguments) or optional

(adjuncts)
– A head word often controls the structure of its modifiers

19

Heads
• Head: “the sub-constituent which determines the internal

structure and external distribution of the constituent as a
whole” (Bender #52)

• Examples
– sentence: (usually) the main verb
– noun phrase: (usually) the main noun
– verb phrase: (usually) the active verb

20

Dependents: Arguments & adjuncts
• Dependents of a head:

– Arguments: selected/licensed by the head and
complete the meaning

– Adjuncts: not selected and refine the meaning

21

Constituent structure
• The head often constrains the internal structure of a constituent
• Examples

– verb
∎ [Kim]ARGUMENT is [ready]ADJUNCT.

– adjective
∎ Kim is [readyADJ [to make a pizza]V].
∎ * Kim is [tiredADJ [to make a pizza]V].

– noun
∎ [The [red]ADJ ball]
∎ * [The [red]ADJ ball [the stick]N]
∎ [The [red]ADJ ball [on top of the stick]PP]

22

More examples
– Kim planned [to give Sandy books].
– * Kim planned [to give Sandy].
– Kim planned [to give books].
– * Kim planned [to see Sandy books].
– Kim [would [give Sandy books]].
– Pat [helped [Kim give Sandy books]].
– * [[Give Sandy books] [surprised Kim]].

23

Summary

24

what is
syntax?

A finite set of rules licensing
an infinite number of strings

The rules specify how words and
phrases relate to one another in a
hierarchical manner

No one knows what the actual rules
are, but there is consensus that the
rules must exist!

Outline

25

what is
syntax?

where do
grammars

come from?

how can a
computer find
a sentence’s

structure?

Treebanks
• Collections of natural text that are annotated according to

a particular syntactic theory
– Usually created by linguistic experts
– Ideally as large as possible
– Theories are usually coarsely divided into constituent/

phrase or dependency structure

26

Formalisms
• Phrase-structure and dependency grammars

– Phrase-structure: encodes the phrasal components of
language

– Dependency grammars encode the relationships
between words

27

Penn Treebank (1993)

28

ht
tp

s:
//c

at
al

og
.ld

c.
up

en
n.

ed
u/

LD
C

99
T4

2

The Penn Treebank
• Syntactic annotation of a million words of the 1989 Wall

Street Journal, plus other corpora (released in 1993)
– (Trivia: People often discuss “The Penn Treebank” when

the mean the WSJ portion of it)

29

The Penn Treebank
• Syntactic annotation of a million words of the 1989 Wall

Street Journal, plus other corpora (released in 1993)
– (Trivia: People often discuss “The Penn Treebank” when

the mean the WSJ portion of it)
• Contains 74 total tags: 36 parts of speech, 7 punctuation

tags, and 31 phrasal constituent tags, plus some relation
markings

29

The Penn Treebank
• Syntactic annotation of a million words of the 1989 Wall

Street Journal, plus other corpora (released in 1993)
– (Trivia: People often discuss “The Penn Treebank” when

the mean the WSJ portion of it)
• Contains 74 total tags: 36 parts of speech, 7 punctuation

tags, and 31 phrasal constituent tags, plus some relation
markings

• Was the foundation for an entire field of research and
applications for over twenty years

29

((S
 (NP-SBJ
 (NP (NNP Pierre) (NNP Vinken))
 (, ,)
 (ADJP
 (NP (CD 61) (NNS years))
 (JJ old))
 (, ,))
 (VP (MD will)
 (VP (VB join)
 (NP (DT the) (NN board))
 (PP-CLR (IN as)
 (NP (DT a) (JJ nonexecutive) (NN director)))
 (NP-TMP (NNP Nov.) (CD 29))))
 (. .)))

ht
tp

s:
//c

om
m

on
s.

w
ik

im
ed

ia
.o

rg
/w

ik
i/F

ile
:P

ie
rre

Vi
nk

en
.jp

g

Pierre Vinken, 61 years old, will join the board
as a nonexecutive director Nov. 29.

((S
 (NP-SBJ
 (NP (NNP Pierre) (NNP Vinken))
 (, ,)
 (ADJP
 (NP (CD 61) (NNS years))
 (JJ old))
 (, ,))
 (VP (MD will)
 (VP (VB join)
 (NP (DT the) (NN board))
 (PP-CLR (IN as)
 (NP (DT a) (JJ nonexecutive) (NN director)))
 (NP-TMP (NNP Nov.) (CD 29))))
 (. .)))

ht
tp

s:
//c

om
m

on
s.

w
ik

im
ed

ia
.o

rg
/w

ik
i/F

ile
:P

ie
rre

Vi
nk

en
.jp

g

Pierre Vinken, 61 years old, will join the board
as a nonexecutive director Nov. 29.

x 49,208

Context Free Grammar
• Nonterminals are rewritten

based on the lefthand side alone

31

Turing machine

context-sensitive
grammar

context free grammar

finite state machine

Chomsky formal
language hierarchy

Context Free Grammar
• Nonterminals are rewritten

based on the lefthand side alone
• Algorithm:

31

Turing machine

context-sensitive
grammar

context free grammar

finite state machine

Chomsky formal
language hierarchy

Context Free Grammar
• Nonterminals are rewritten

based on the lefthand side alone
• Algorithm:

– Start with TOP

31

Turing machine

context-sensitive
grammar

context free grammar

finite state machine

Chomsky formal
language hierarchy

Context Free Grammar
• Nonterminals are rewritten

based on the lefthand side alone
• Algorithm:

– Start with TOP
– For each leaf nonterminal:

31

Turing machine

context-sensitive
grammar

context free grammar

finite state machine

Chomsky formal
language hierarchy

Context Free Grammar
• Nonterminals are rewritten

based on the lefthand side alone
• Algorithm:

– Start with TOP
– For each leaf nonterminal:

∎ Sample a rule from the set
of rules for that nonterminal

31

Turing machine

context-sensitive
grammar

context free grammar

finite state machine

Chomsky formal
language hierarchy

Context Free Grammar
• Nonterminals are rewritten

based on the lefthand side alone
• Algorithm:

– Start with TOP
– For each leaf nonterminal:

∎ Sample a rule from the set
of rules for that nonterminal

∎ Replace it with

31

Turing machine

context-sensitive
grammar

context free grammar

finite state machine

Chomsky formal
language hierarchy

Context Free Grammar
• Nonterminals are rewritten

based on the lefthand side alone
• Algorithm:

– Start with TOP
– For each leaf nonterminal:

∎ Sample a rule from the set
of rules for that nonterminal

∎ Replace it with
∎ Recurse

31

Turing machine

context-sensitive
grammar

context free grammar

finite state machine

Chomsky formal
language hierarchy

Context Free Grammar
• Nonterminals are rewritten

based on the lefthand side alone
• Algorithm:

– Start with TOP
– For each leaf nonterminal:

∎ Sample a rule from the set
of rules for that nonterminal

∎ Replace it with
∎ Recurse

• Terminates when there are no
more nonterminals

31

Turing machine

context-sensitive
grammar

context free grammar

finite state machine

Chomsky formal
language hierarchy

32

TOP TOP → S

32

TOP TOP → S
S S → VP

32

TOP TOP → S
S S → VP
VP VP → (VB→halt) NP PP

32

TOP TOP → S
S S → VP
VP VP → (VB→halt) NP PP
halt NP PP NP → (DT The) 

 (JJ→market-jarring)  
 (CD→25)

32

TOP TOP → S
S S → VP
VP VP → (VB→halt) NP PP
halt NP PP NP → (DT The) 

 (JJ→market-jarring)  
 (CD→25)

halt The market-jarring 25 PP PP → (IN→at) NP

32

TOP TOP → S
S S → VP
VP VP → (VB→halt) NP PP
halt NP PP NP → (DT The) 

 (JJ→market-jarring)  
 (CD→25)

halt The market-jarring 25 PP PP → (IN→at) NP
halt The market-jarring 25 at NP NP → (DT→the)
(NN→bond)

32

TOP TOP → S
S S → VP
VP VP → (VB→halt) NP PP
halt NP PP NP → (DT The) 

 (JJ→market-jarring)  
 (CD→25)

halt The market-jarring 25 PP PP → (IN→at) NP
halt The market-jarring 25 at NP NP → (DT→the)
(NN→bond)
halt The market-jarring 25 at the bond

32

TOP TOP → S
S S → VP
VP VP → (VB→halt) NP PP
halt NP PP NP → (DT The) 

 (JJ→market-jarring)  
 (CD→25)

halt The market-jarring 25 PP PP → (IN→at) NP
halt The market-jarring 25 at NP NP → (DT→the)
(NN→bond)
halt The market-jarring 25 at the bond
 
(TOP (S (VP (VB halt) (NP (DT The) (JJ market-jarring) (CD
25)) (PP (IN at) (NP (DT the) (NN bond))))))

32

A problem with the Penn Treebank
• One language, English

– Represents a very narrow typology (e.g., little
morphology)

– Consider the tags we looked at before
∎ nouns: NN, NNS, NNP, NNPS
∎ adverbs: RB, RBR, RBS, RP
∎ verbs: VB, VBD, VBG, VBN, VBP, VBZ

– How well will these generalize to other languages?
•

33

Dependency Treebanks (2012)

• Dependency trees annotated across languages in a
consistent manner

34https://universaldependencies.org

Example
• Instead of encoding phrase structure, it encodes

dependencies between words
• Often more directly encodes information we care about

(i.e., who did what to whom)

35

Guiding principles
• Works for individual languages
• Suitable across languages
• Easy to use when annotating
• Easy to parse quickly
• Understandable to laypeople
• Usable by downstream tasks

36https://universaldependencies.org/introduction.html

Universal Dependencies
• Parts of speech

– open class
∎ ADJ, ADV, INTJ, NOUN, PROPN, VERB

– closed class
∎ ADP, AUX, CCONJ, DET, NUM, PART, PRON,

SCONJ
– other

∎ PUNCT, SYM, X

37

Where do grammars come from?

38https://www.shutterstock.com/image-vector/stork-carrying-baby-boy-133823486

Where do grammars come from?
• Treebanks!
• Given a treebank, and a formalism, we can learn statistics

by counting over the annotated instances

39

Probabilities
• For example, a context-free grammar

– S → NP , NP VP . [0.002]
– NP → NNP NNP [0.037]
– , → , [0.999]
– NP → * [X]
– VP → VB NP [0.057]
– NP → PRP$ NN [0.008]
– . → . [0.987] 

•
Probabilities given as P(X) = ∑

X′ ∈N

P(X)
P(X′)

40

Summary

41

where do
grammars

come from?

Grammars are learned from Treebanks

Treebanks are annotated according to a particular
theory or formalism

Outline

42

what is
syntax?

where do
grammars

come from?

how can a
computer find
a sentence’s

structure?

Formal Language Theory
• Consider the claims underlying our grammar-based view

of language
1. Sentences are either in or out of a language
2. Sentences have an invisible hidden structure

43

Formal Language Theory
• Consider the claims underlying our grammar-based view

of language
1. Sentences are either in or out of a language
2. Sentences have an invisible hidden structure

• We can generalize this discussion to make a connection
between natural and other kinds of languages

43

Formal Language Theory
• Consider the claims underlying our grammar-based view

of language
1. Sentences are either in or out of a language
2. Sentences have an invisible hidden structure

• We can generalize this discussion to make a connection
between natural and other kinds of languages

• Consider, for example, computer programs
– They either compile or don’t compile
– Their structure determines their interpretation

43

Formal Language Theory
• Generalization: define a language to be a set of strings

under some alphabet,
– e.g., the set of valid English sentences (where the

“alphabet” is English words), or the set of valid Python
programs

Σ

44

Formal Language Theory
• Generalization: define a language to be a set of strings

under some alphabet,
– e.g., the set of valid English sentences (where the

“alphabet” is English words), or the set of valid Python
programs

Σ

• Formal Language Theory provides a common framework
for studying properties of these languages, e.g.,
– Is this file a valid C++ program? A valid Czech

sentence?
– What is the structure?
– How hard / time-consuming is it to answer these

questions?
44

The Chomsky Hierarchy
• Definitions: given

– an alphabet (),
– terminal symbols, e.g.,
– nonterminal symbols, e.g., {S, N, A, B}
– , , , strings of terminals and/or nonterminals

Σ
a ∈ Σ

α β γ

45

Type Rules Name Recognized by

3 Regular Regular
expressions

2 Context-free Pushdown
automata

1 Context-sensitive Linear-bounded
Turing machine

0 Recursively
enumerable Turing Machines

A → aB

A → α
A → α β αγβ

A → α β γ

Problems
• What is the value?  
 
(5 + 7) * 11

46

• Who did what to whom?  
 
Him the Almighty hurled 
 
 
 
 
Dipanjan taught Johnmark

If we have a grammar, we can answer these with parsing

Parsing
• If the grammar has certain properties (Type 2 or 3), we

can efficiently answer two questions with a parser
– Is the sentence in the language of the parser?
– What is the structure above that sentence?

47

Algorithms
• The CKY algorithm for parsing with constituency

grammars
• Transition-based parsing with dependency grammars

48

Chart parsing for constituency grammars

• Maintains a chart of nonterminals spanning words, e.g.,
– NP over words 1..4 and 2..5
– VP over words 4..6 and 4..8
– etc

49

Chart parsing for constituency grammars

500 1 2 3 4 5
Time flies like an arrow

0NN1 1NN2,1VB2 2VB3,2IN3 3DT4 4NN5

3NP50NP1

2PP5, 2VP50NP2

1VP5

0S5

CKY algorithm
• How do we produce this chart? Cocke-Younger-Kasami (CYK/

CKY)
• Basic idea is to apply rules in a bottom-up fashion, applying all

rules, and (recursively) building larger constituents from
smaller ones

• Input: sentence of length N
for width in 2..N

for begin i in 1..{N - width}
j = i + width

for split k in {i + 1}..{j - 1}
for all rules A → B C

create iAj if iBk and kCj

51

CKY algorithm

520 1 2 3 4 5
Time flies like an arrow

CKY algorithm

520 1 2 3 4 5
Time flies like an arrow

NN NN,VB VB,IN DT NN

CKY algorithm

520 1 2 3 4 5
Time flies like an arrow

NN NN,VB VB,IN DT NN
NP→DT NNNP→NN

CKY algorithm

520 1 2 3 4 5
Time flies like an arrow

NN NN,VB VB,IN DT NN
NP→DT NNNP→NN

PP→2IN3 3NP5NP→NN NN

CKY algorithm

520 1 2 3 4 5
Time flies like an arrow

NN NN,VB VB,IN DT NN
NP→DT NNNP→NN

PP→2IN3 3NP5NP→NN NN
VP→2VB3 3NP5

CKY algorithm

520 1 2 3 4 5
Time flies like an arrow

NN NN,VB VB,IN DT NN
NP→DT NNNP→NN

PP→2IN3 3NP5NP→NN NN

VP→VB PP

VP→2VB3 3NP5

CKY algorithm

520 1 2 3 4 5
Time flies like an arrow

NN NN,VB VB,IN DT NN
NP→DT NNNP→NN

PP→2IN3 3NP5NP→NN NN

VP→VB PP

VP→2VB3 3NP5

S → 0NP1 1VP5

CKY algorithm

520 1 2 3 4 5
Time flies like an arrow

NN NN,VB VB,IN DT NN
NP→DT NNNP→NN

PP→2IN3 3NP5NP→NN NN

VP→VB PP

VP→2VB3 3NP5

S → 0NP1 1VP5

S → 0NP2 2VP5

CKY algorithm
• Termination: is there a chart entry at 0SN?

– ✓ string is in the language
– Obtain the structure by following backpointers
– Not covered: adding probabilities to rules to resolve

amgibuities

53

Dependency parsing
• The situation is different in many ways

– We’re no longer building labeled constituents
– Instead, we’re searching for word dependencies

54

Dependency parsing
• The situation is different in many ways

– We’re no longer building labeled constituents
– Instead, we’re searching for word dependencies

• This is accomplished by a stack-based transition parser
– Repeatedly (a) shift a word onto the stack or (b) create

a LEFT or RIGHT dependency from the top two words

54

step stack words action relation

ROOT human languages are hard to parse

step stack words action relation

0 [] [human,langs,are,hard,to,parse] SHIFT

ROOT human languages are hard to parse

step stack words action relation

0 [] [human,langs,are,hard,to,parse] SHIFT

1 [human] [langs,are,hard,to,parse] SHIFT

ROOT human languages are hard to parse

step stack words action relation

0 [] [human,langs,are,hard,to,parse] SHIFT

1 [human] [langs,are,hard,to,parse] SHIFT

2 [human,langs] [are,hard,to,parse] LEFTARC human←langs

ROOT human languages are hard to parse

step stack words action relation

0 [] [human,langs,are,hard,to,parse] SHIFT

1 [human] [langs,are,hard,to,parse] SHIFT

2 [human,langs] [are,hard,to,parse] LEFTARC human←langs

3 [langs] [are,hard,to,parse] SHIFT

ROOT human languages are hard to parse

step stack words action relation

0 [] [human,langs,are,hard,to,parse] SHIFT

1 [human] [langs,are,hard,to,parse] SHIFT

2 [human,langs] [are,hard,to,parse] LEFTARC human←langs

3 [langs] [are,hard,to,parse] SHIFT

4 [langs,are] [hard,to,parse] LEFTARC langs←are

ROOT human languages are hard to parse

step stack words action relation

0 [] [human,langs,are,hard,to,parse] SHIFT

1 [human] [langs,are,hard,to,parse] SHIFT

2 [human,langs] [are,hard,to,parse] LEFTARC human←langs

3 [langs] [are,hard,to,parse] SHIFT

4 [langs,are] [hard,to,parse] LEFTARC langs←are

5 [are] [hard,to,parse] SHIFT

ROOT human languages are hard to parse

step stack words action relation

0 [] [human,langs,are,hard,to,parse] SHIFT

1 [human] [langs,are,hard,to,parse] SHIFT

2 [human,langs] [are,hard,to,parse] LEFTARC human←langs

3 [langs] [are,hard,to,parse] SHIFT

4 [langs,are] [hard,to,parse] LEFTARC langs←are

5 [are] [hard,to,parse] SHIFT

6 [are,hard] [to,parse] SHIFT

ROOT human languages are hard to parse

step stack words action relation

0 [] [human,langs,are,hard,to,parse] SHIFT

1 [human] [langs,are,hard,to,parse] SHIFT

2 [human,langs] [are,hard,to,parse] LEFTARC human←langs

3 [langs] [are,hard,to,parse] SHIFT

4 [langs,are] [hard,to,parse] LEFTARC langs←are

5 [are] [hard,to,parse] SHIFT

6 [are,hard] [to,parse] SHIFT

7 [are,hard,to] [parse] SHIFT

ROOT human languages are hard to parse

step stack words action relation

0 [] [human,langs,are,hard,to,parse] SHIFT

1 [human] [langs,are,hard,to,parse] SHIFT

2 [human,langs] [are,hard,to,parse] LEFTARC human←langs

3 [langs] [are,hard,to,parse] SHIFT

4 [langs,are] [hard,to,parse] LEFTARC langs←are

5 [are] [hard,to,parse] SHIFT

6 [are,hard] [to,parse] SHIFT

7 [are,hard,to] [parse] SHIFT

8 [are,hard,to,parse] [] LEFTARC to←parse

ROOT human languages are hard to parse

step stack words action relation

0 [] [human,langs,are,hard,to,parse] SHIFT

1 [human] [langs,are,hard,to,parse] SHIFT

2 [human,langs] [are,hard,to,parse] LEFTARC human←langs

3 [langs] [are,hard,to,parse] SHIFT

4 [langs,are] [hard,to,parse] LEFTARC langs←are

5 [are] [hard,to,parse] SHIFT

6 [are,hard] [to,parse] SHIFT

7 [are,hard,to] [parse] SHIFT

8 [are,hard,to,parse] [] LEFTARC to←parse

9 [are,hard,parse] [] RIGHTARC hard→parse

ROOT human languages are hard to parse

step stack words action relation

0 [] [human,langs,are,hard,to,parse] SHIFT

1 [human] [langs,are,hard,to,parse] SHIFT

2 [human,langs] [are,hard,to,parse] LEFTARC human←langs

3 [langs] [are,hard,to,parse] SHIFT

4 [langs,are] [hard,to,parse] LEFTARC langs←are

5 [are] [hard,to,parse] SHIFT

6 [are,hard] [to,parse] SHIFT

7 [are,hard,to] [parse] SHIFT

8 [are,hard,to,parse] [] LEFTARC to←parse

9 [are,hard,parse] [] RIGHTARC hard→parse

10 [are,hard] [] RIGHTARC are→hard

ROOT human languages are hard to parse

step stack words action relation

0 [] [human,langs,are,hard,to,parse] SHIFT

1 [human] [langs,are,hard,to,parse] SHIFT

2 [human,langs] [are,hard,to,parse] LEFTARC human←langs

3 [langs] [are,hard,to,parse] SHIFT

4 [langs,are] [hard,to,parse] LEFTARC langs←are

5 [are] [hard,to,parse] SHIFT

6 [are,hard] [to,parse] SHIFT

7 [are,hard,to] [parse] SHIFT

8 [are,hard,to,parse] [] LEFTARC to←parse

9 [are,hard,parse] [] RIGHTARC hard→parse

10 [are,hard] [] RIGHTARC are→hard

11 [are] [] RIGHTARC ROOT→are

ROOT human languages are hard to parse

step stack words action relation

0 [] [human,langs,are,hard,to,parse] SHIFT

1 [human] [langs,are,hard,to,parse] SHIFT

2 [human,langs] [are,hard,to,parse] LEFTARC human←langs

3 [langs] [are,hard,to,parse] SHIFT

4 [langs,are] [hard,to,parse] LEFTARC langs←are

5 [are] [hard,to,parse] SHIFT

6 [are,hard] [to,parse] SHIFT

7 [are,hard,to] [parse] SHIFT

8 [are,hard,to,parse] [] LEFTARC to←parse

9 [are,hard,parse] [] RIGHTARC hard→parse

10 [are,hard] [] RIGHTARC are→hard

11 [are] [] RIGHTARC ROOT→are

12 [] [] DONE

ROOT human languages are hard to parse

Unanswered questions
• How do we score rules (for constituency parsing) and

actions and relations (for dependency parsing)?
– Probabilities can be read from Treebanks
– Actions can be informed by feature selection

• How do we know the right path to take?
– We can try multiple paths using beam search
– We get lots of savings via dynamic programming

56

Summary

57

how can a
computer find
a sentence’s

structure?

For context-free grammars,
the (weighted) CKY algorithm
can be used to find the most
probable (maximum a posteriori)
tree given a certain grammar

For dependency grammars, the
most popular approach is a variation
of transition-based parsers

Resources
• Demos:

– AllenNLP: https://demo.allennlp.org
– Berkeley Neural Parser: https://parser.kitaev.io
– Spacy dependency parser: https://explosion.ai/demos/

displacy

58

https://demo.allennlp.org
https://parser.kitaev.io
https://explosion.ai/demos/displacy
https://explosion.ai/demos/displacy
https://demo.allennlp.org
https://parser.kitaev.io
https://explosion.ai/demos/displacy
https://explosion.ai/demos/displacy

Outline

59

what is
syntax?

where do
grammars

come from?

how can a
computer find
a sentence’s

structure?

Outline

59

what is
syntax?

where do
grammars

come from?

how can a
computer find
a sentence’s

structure?

the study of the
internal structure of

sentences (in natural
and synthetic
languages)

Outline

59

what is
syntax?

where do
grammars

come from?

how can a
computer find
a sentence’s

structure?

the study of the
internal structure of

sentences (in natural
and synthetic
languages)

they are created by
linguists, usually
under particular

grammatical theories

Outline

59

what is
syntax?

where do
grammars

come from?

how can a
computer find
a sentence’s

structure?

the study of the
internal structure of

sentences (in natural
and synthetic
languages)

they are created by
linguists, usually
under particular

grammatical theories

train a grammar from
a treebank and then
apply that grammar
to new sentences

using parsing
algorithms

