SYNTAX

Matt Post
IntroHLT class
10 September 2020

JOHNS HOPKINS

UNIVERSITY

and stupor his the Fred with
pain from ease couldn’t would
a set he cigarette out the that
for in wife Jones was during
caring a often drugs house but
screaming the crying at for
didn't fear worn sleep ablaze
day the from that she night

Fred Jones was worn out from
caring for his often screaming
and crying wife during the day
but he couldn't sleep at nignt
for fear that she in a stupor
from the drugs that didn't ease
the pain would set the house
ablaze with a cigarette

- 46 words, 46! permutations of those words, the vast
majority of them ungrammatical and meaningless

- How Is that we can

- process and understand this sentence?

- discriminate it from the sea of ungrammatical
permutations it floats in?

lToday we will cover

Linguistics

how can a
computer find

where do

grammars
come from?

a sentence’s
structure?

Computer Science

Goals for today

- After today, you should be able to

- Give a working definition of syntax and describe how
linguists think about it

- Describe two well-known grammar formalisms and
projects supporting them

- Discuss issues related to universal language features
- Describe the formal language hierarchy

- Describe algorithms for parsing the two grammar
formalisms

Outline

how can a
computer find

where do

grammars
come from?

a sentence’s
structure?

Linguistic fields of study

- Phonetics: sounds

Linguistic fields of study

- Phonetics: sounds
 Phonology: sound systems

Linguistic fields of study

- Phonetics: sounds
 Phonology: sound systems
- Morphology: internal word structure

Linguistic fields of study

- Phonetics: sounds

 Phonology: sound systems

- Morphology: internal word structure

- Syntax: external word structure (sentences)

Linguistic fields of study

- Phonetics: sounds

 Phonology: sound systems

- Morphology: internal word structure

- Syntax: external word structure (sentences)
- Semantics: sentence meaning

Linguistic fields of study

- Phonetics: sounds

 Phonology: sound systems

- Morphology: internal word structure

- Syntax: external word structure (sentences)
- Semantics: sentence meaning

-+ Pragmatics: contextualized meaning and communicative
goals

Aside

- Much of our focus is on written language, but language is
first and foremost spoken

- Why does this matter?

Aside

- Much of our focus is on written language, but language is
first and foremost spoken

- Why does this matter?
- Which of these is easier for a computer to work with?

Aside

- Much of our focus is on written language, but language is
first and foremost spoken

- Why does this matter?
- Which of these is easier for a computer to work with?

- (written) Dipanjan asked a question

Aside

- Much of our focus is on written language, but language is
first and foremost spoken

- Why does this matter?
- Which of these is easier for a computer to work with?
- (written) Dipanjan asked a question
- (spoken) Dipanjan, uh, he, uh, um, was wondering, uh,
he had a question

Today’s focus

é}@ MORGAN& CLAYPOOL PUBLISHERS

Linguistic Fundamentals
for Natural Language

Processing
100 Essentials from

Morphology and Syntax

Emily M. Bender

SYNTHESIS LLECTURES ON
HuMmaN L ANGUAGE TECHNOLOGIES

Graeme Hirst, Series Editor

What is syntax?

- A set of constraints on the possible sentences in the
language

- *A set of constraint on the possible sentence.
- *Dipanjan had [a] question.
- *You are on class.

+ At a coarse level, we can divide all possible sequences of
words into two groups: valid and invalid (or grammatical
and ungrammatical)

Human judgments

- How do we know what’s in and out? We simply ask
humans

- But how do humans know?
- Bad idea: big lists
- Better idea: grammars

A hierarchical view

- A grammar is a finite set of rules licensing a (possibly
infinite) number of strings

* e.g., some rules
- [sentence] — [subject] [predicate]
- [subject] = [noun phrase]
- [noun phrase] — [determiner]? [adjective]* [noun]
- [predicate] — [verb phrase] [adjunct]
 Rules are phrasal or terminal
- Phrasal rules form constituents in a tree
- Terminal rules are parts of speech and produce words

Example

S
NP
JJ NNS VBP ADJP
Human languages are /\
SBAR
hard
S
VP
TO VP
to
VB

parse

POS Examples

 No general agreement about the exact set of parts of
speech

- Penn Treebank tagset examples

POS Examples

 No general agreement about the exact set of parts of
speech

- Penn Treebank tagset examples
- nouns: NN, NNS, NNP, NNPS

POS Examples

 No general agreement about the exact set of parts of
speech

- Penn Treebank tagset examples
- nouns: NN, NNS, NNP, NNPS

- adverbs: RB, RBR, RBS, RP

POS Examples

 No general agreement about the exact set of parts of
speech

- Penn Treebank tagset examples

- nouns: NN, NNS, NNP, NNPS

- adverbs: RB, RBR, RBS, RP

- verbs: VB, VBD, VBG, VBN, VBP, VBZ

POS Examples

 No general agreement about the exact set of parts of
speech

- Penn Treebank tagset examples

- nouns: NN, NNS, NNP, NNPS

- adverbs: RB, RBR, RBS, RP

- verbs: VB, VBD, VBG, VBN, VBP, VBZ

- (Here, different tags are used to capture the small bit of
morphology present in English)

Parts of Speech (POS)

- Three definitions of noun

Grammar school
(“metaphysical’)
a person, place,
thing, or idea

Parts of Speech (POS)

- Three definitions of noun

Grammar school

(“metaphysical’)
a person, place,
thing, or idea

Distributional

the set of words
that have the
same distribution
as other nouns

{l.you he} saw the
{bird,cat,dog].

Parts of Speech (POS)

- Three definitions of noun

Grammar school Distributional Functional
(“metaphysical’)
a person, place, the set of words the set of words
thing, or idea that have the that serve as
same distribution | arguments to
as other nouns verbs
verb
[l you,he} saw the 7N
Ibird,cat,dog). L OUQ aaverp
adjective

Phrases and Constituents

- Longer sequences of words can perform the same
function as individual parts of speech:

- | saw [apT Kidn]npP
- | saw [a kid playing basketball]np
- | saw [a kid playing basketball alone on the court]np

- This gives rise to the idea of a phrasal constituent, which
functions as a unit in relation to the rest of the sentence

Constituent tests

- How do you know if a phrase functions as a constituent?
-+ Afew tests
— Coordination
' Kim [read a book], [gave it to Sandy], and [left].
- Substitution with a word
' Kim read [a very interesting book about grammar].
 Kim read [it].
- See Bender #51

Heads, arguments, & adjuncts

- Syntax is about the relationships among words and
phrases in a sentence

Heads, arguments, & adjuncts

- Syntax is about the relationships among words and
phrases in a sentence

- Each constituent has its own internal structure, as well as
relationship with words and constituents outside it

Heads, arguments, & adjuncts

- Syntax is about the relationships among words and
phrases in a sentence

- Each constituent has its own internal structure, as well as
relationship with words and constituents outside it

- Hierarchical structure among constituents
- Top down, each constituent has a head
- Heads have (phrasal) dependents

- Dependents can be required (arguments) or optional
(adjuncts)

— A head word often controls the structure of its modifiers

Heads

- Head: “the sub-constituent which determines the internal
structure and external distribution of the constituent as a

whole” (Bender #52)

- Examples

- sentence: (usually) the main verb

- noun phrase: (usually) the main noun
- verb phrase: (usually) the active verb

Dependents: Arguments & adjuncts

- Dependents of a head:

- Arguments: selected/licensed by the head and
complete the meaning

- Adjuncts: not selected and refine the meaning

Constituent structure

- The head often constrains the internal structure of a constituent
- Examples
- verb
. [Kim]ARGUMENT jjg [ready]ADJUNCT,
- adjective
* Kimis [readyapy [t0O make a pizza]v].
' * Kim is [tiredapy [to make a pizza]v].
- noun
" [The [red]apy ball]
" * [The [red]apJ ball [the stick]n
' [The [red]apy ball [on top of the stick]pp]

More examples

- Kim planned [to give Sandy books].
- *Kim planned [to give Sandy].

- Kim planned [to give books].

- *Kim planned [to see Sandy books].

- Kim [would [give Sandy books]].

- Pat [helped [Kim give Sandy books]].
- *[[Give Sandy books] [surprised Kim]].

summary

A finite set of rules licensing
an infinite number of strings

The rules specify how words and
phrases relate to one another in a
hierarchical manner

No one knows what the actual rules
are, but there iIs consensus that the
rules must exist!

Outline

where do
grammars

come from?

how can a
computer find

a sentence’s
structure?

25

Treebanks

- Collections of natural text that are annotated according to
a particular syntactic theory

- Usually created by linguistic experts

- ldeally as large as possible

— Theories are usually coarsely divided into constituent/
phrase or dependency structure

Formalisms

- Phrase-structure and dependency grammars

- Phrase-structure: encodes the phrasal components of
language

- Dependency grammars encode the relationships
between words

Penn Treebank

1993

ABOLT
MEMBZRS
COMIMLIN CATIONS

LANSUAGE RESOURCES

Oktaning Data
Zanakg

3y Year
Top Ten Corpo-a
Frojects
Sea‘ch
Vemberahga
Sta Scholaships
Tools
Papera
LR v/ki
DATA MANAGEMENT
COLLABORATIONS

v

Home » Lanquage Rezourcee) Daa

Treebank-3

ltem Nams:
Author(s;:

LDC Catafog No.:

ISBN:
ISLRN.

Member Year(s):

DCMI Type(s).
Data Sourca(s):
Project(s)
Lpolicstion(s,:
Languzga(s):
Langueg2 ID(s).
License(s).

Daline
Documentation:

Licensing Instructions.

Citation;

Related Weorks:!

Introduction

[
Treetbank-3

Mitchzll P. Marcug, Beatnce Santorini, Mary Arn Marcinkiewicz, Ann layler
LDC39T42

1-58563-162-9

141-282-€91-413-2

1999

Text

telechcne speech, newswire, microphons speech, iranscribed speech, varied
TIDES, GALF

pars/ng, natural language prccessing, tagging

Englien

eng

DC User Agrzemsant for Non-Members

DCB89T42 Docurments

Subscrplion & Standzrd Members, and Non-Memters

Mazrcug, Mtchall, st al. Tresbank-3 LDC99T42. Wez Download. Philadelphia:
Lnguistic Data Coneortium, 1959

Vicw

This release contains the following Treecank-2 Matanal:

s One million words of 1989 Wal Streat Journal material annotated in Treebank Il siyle
e Asmall sample cf ATIS-3 material annotatad in Treebank || style.
¢ Afully tagoed version of the Brown Corpus.

and the followirg ncw material:

¢ Switchboard taggad dysfuesncy-annotated. and parsed (ext

e Srown parsed fext

Tre Trcedank bracketing style is designed to allow the extraction of simple predicate/argument structurc.

Qver one million worcs of text are provided with this bracketng apcled.

Naia

//catalog.ldc.uper

httos

The Penn Treebank

+ Syntactic annotation of a million words of the 1989 Wall
Street Journal, plus other corpora (released in 1993)

- (Trivia: People often discuss “The Penn Treebank” when
the mean the WSJ portion of it)

The Penn Treebank

+ Syntactic annotation of a million words of the 1989 Wall
Street Journal, plus other corpora (released in 1993)

- (Trivia: People often discuss “The Penn Treebank” when
the mean the WSJ portion of it)

-+ Contains 74 total tags: 36 parts of speech, 7 punctuation
tags, and 31 phrasal constituent tags, plus some relation
markings

The Penn Treebank

+ Syntactic annotation of a million words of the 1989 Wall
Street Journal, plus other corpora (released in 1993)

- (Trivia: People often discuss “The Penn Treebank” when
the mean the WSJ portion of it)

-+ Contains 74 total tags: 36 parts of speech, 7 punctuation
tags, and 31 phrasal constituent tags, plus some relation
markings

- Was the foundation for an entire field of research and
applications for over twenty years

((S
(NP-SBJ
(NP (NNP Pierre) (NNP Vinken))
()
(ADJP
(NP (CD 61) (NNS years))
(JJ old))
()
(VP (MD will)
(VP (VB join)
(NP (DT the) (NN board))
(PP-CLR (IN as)
(NP (DT a) (JJ nonexecutive) (NN director)))
(NP-TMP (NNP Nov.) (CD 29))))

(--)))

Pierre Vinken, 61 years old, will join the board

as a nonexecutive director Nov. 29.

https.//commons.wikimedia.org/wiki/File:PierreVinken.jpg

((S
(NP-SBJ
(NP (NNP Pierre) (NNP Vinken))
()
(ADJP
(NP (CI S years))

()
(VP (MD wil
(VP (VB join)
(NP (DT the) (NN board))
(PP-CLR (IN as)
(NP (DT a) (JJ nonexecutive) (NN director)))
(NP-TMP (NNP Nov.) (CD 29))))

(--)))

Pierre Vinken, 61 years old, will join the board

as a nonexecutive director Nov. 29.

https.//commons.wikimedia.org/wiki/File:PierreVinken.jpg

Context Free Grammar

Nonterminals are rewritten
based on the lefthand side alone

Chomsky formal
language hierarchy

Turing machine

context-sensitive
grammar

context free grammar

finite state machine

Context Free Grammar

Nonterminals are rewritten
based on the lefthand side alone

- Algorithm:

Chomsky formal
language hierarchy

Turing machine

context-sensitive
grammar

context free grammar

finite state machine

Context Free Grammar

Nonterminals are rewritten Chomsky formal
based on the lefthand side alone language hierarchy
- Algorithm:

Turing machine

— Start with TOP

context-sensitive
grammar

context free grammar

finite state machine

Context Free Grammar

Nonterminals are rewritten Chomsky formal
based on the lefthand side alone language hierarchy
- Algorithm: | |
_ Turing machine
— Start with TOP
- For each leaf nonterminal: context-sensitive

grammar

context free grammar

finite state machine

Context Free Grammar

- Nonterminals are rewritten Chomsky formal

based on the lefthand side alone language hierarchy
- Algorithm: | |

_ Turing machine
— Start with TOP
- For each leaf nonterminal: context-sensitive
* Sample a rule from the set Jrarmet
of rules for that nonterminal context free grammar

finite state machine

Context Free Grammar

- Nonterminals are rewritten Chomsky formal
based on the lefthand side alone language hierarchy
- Algorithm:
_ Turing machine
— Start with TOP
- For each leaf nonterminal: context-sensitive

grammar

= Sample a rule from the set
of rules for that nonterminal

" Replace it with

context free grammar

finite state machine

Context Free Grammar

- Nonterminals are rewritten Chomsky formal
based on the lefthand side alone language hierarchy
- Algorithm:
_ Turing machine
— Start with TOP
- For each leaf nonterminal: context-sensitive

grammar

= Sample a rule from the set
of rules for that nonterminal

" Replace it with
" Recurse finite state machine

context free grammar

Context Free Grammar

Nonterminals are rewritten Chomsky formal
based on the lefthand side alone language hierarchy
- Algorithm: |
_ Turing machine
— Start with TOP
- For each leaf nonterminal: context-sensitive
* Sample a rule from the set e
of rules for that nonterminal context free grammar
" Replace it with
" Recu rSE finite state machine

- Terminates when there are no
more nonterminals

32

TOP TOP = S

TOP TOP — S
S S — VP

TOP TOP — S
S S — VP
VP VP — (VB—halt) NP PP

TOP TOP - S

S S — VP
VP VP — (VB—halt) NP PP
halt NP PP NP — (DT The)

(
(JJ—market-jarring)
(CD—25)

TOP TOP = S

S S - VP

VP VP = (VB—halt) NP PP

halt NP PP NP — (DT The)
(JJ—market-jarring)
(CD—25)

halt The market-jarring 25 PP PP — (IN—at) NP

TOP
S
VP

halt NP PP

halt The market-jarring 25 PP

halt The market-jarring 25 at NP
(NN—bond)

TOP —» S
S — VP
VP — (VB—halt) NP PP

NP — (DT The)
JJ—market-jarring)

(

(

(

(CD—25)
PP — (IN—at) NP
NP — (DT—the)

TOP TOP = S

S S - VP

VP VP = (VB—halt) NP PP

halt NP PP NP — (DT The)
(JJ—market-jarring)
(CD—25)

halt The market-jarring 25 PP PP — (IN—at) NP

halt The market-jarring 25 at NP NP — (DT—the)

(NN—bond)

halt The market-jarring 25 at the bond

TOP TOP = S

S S - VP

VP VP = (VB—halt) NP PP

halt NP PP NP — (DT The)
(JJ—market-jarring)
(CD—25)

halt The market-jarring 25 PP PP — (IN—at) NP

halt The market-jarring 25 at NP NP — (DT—the)

(NN—bond)

halt The market-jarring 25 at the bond

(TOP (S (VP (VB halt) (NP (DT The) (JJ market-jarring) (CD
25)) (PP (IN at) (NP (DT the) (NN bond))))))

A problem with the Penn Treebank

+ One language, English

- Represents a very narrow typology (e.g., little
morphology)

- Consider the tags we looked at before
' nouns: NN, NNS, NNP, NNPS
' adverbs: RB, RBR, RBS, RP
' verbs: VB, VBD, VBG, VBN, VBP, VBZ
- How well will these generalize to other languages?

Dependency Treebanks (2012)

W Universal Dependencies

Dependency trees annotated across languages in a
consistent manner

1 The dog was chased by the cat
punct
nsubj:pass obl»
2| Kyvyeto ce npecnegsawe ot KoTKara !
nsubj:pass punct
mDﬁz‘mwaux:pass obl«m._wm
3 Pes byl hon&n kotkou .
punct»
obl
nsubj:pass W%W\M

4 Hunden jagades av katten

https://universaldependencies.org

Example

Instead of encoding phrase structure, it encodes
dependencies between words

Often more directly encodes information we care about
(i.e., who did what to whom)

v

languages

NOUN

Guiding principles

- Works for individual languages
- Suitable across languages

- Easy to use when annotating

- Easy to parse quickly
 Understandable to laypeople

-+ Usable by downstream tasks

httos.//universaldependencies.org/introduction.html

Universal Dependencies

- Parts of speech
- open class
» ADJ, ADV, INTJ, NOUN, PROPN, VERB

— closed class

' ADP, AUX, CCONJ, DET, NUM, PART, PRON,
SCONJ

— other
» PUNCT, SYM, X

Where do grammars come from®

oL A/ =t
T k
~ . ') \'\

httos.//www.shutterstock.com/image-vector/stork-carrying-baby-boy-133823486

Where do grammars come from®

- Treebanks!

- @Given a treebank, and a formalism, we can learn statistics
by counting over the annotated instances

Probabilities

+ For example, a context-free grammar

-S> NP,NPVP. [0.002

- NP = NNP NNP 0.037

-, =, 0.999]

- NP - * X]

- VP - VB NP 0.057

- NP - PRP$ NN [0.008

- ., [0.987]

Probabilities given as P(X) = Z PX)
‘ P(X")

X'eN

summary

Grammars are learned from Treebanks

where do
grammars

come from?

Ireebanks are annotated according to a particular
theory or formalism

Outline

where do
grammars

come from?

how can a
computer find

a sentence’s
structure?

42

~ormal Language lheory

- Consider the claims underlying our grammar-based view
of language

1. Sentences are either in or out of a language
2. Sentences have an invisible hidden structure

~ormal Language lheory

- Consider the claims underlying our grammar-based view
of language

1. Sentences are either in or out of a language
2. Sentences have an invisible hidden structure

- We can generalize this discussion to make a connection
between natural and other kinds of languages

~ormal Language lheory

- Consider the claims underlying our grammar-based view
of language

1. Sentences are either in or out of a language
2. Sentences have an invisible hidden structure

- We can generalize this discussion to make a connection
between natural and other kinds of languages

- Consider, for example, computer programs
- They either compile or don’t compile
- Their structure determines their interpretation

~ormal Language lheory

- Generalization: define a language to be a set of strings
under some alphabet, 2

- e.g., the set of valid English sentences (where the
“alphabet” is English words), or the set of valid Python
programs

~ormal Language lheory

- Generalization: define a language to be a set of strings
under some alphabet, 2

- e.g., the set of valid English sentences (where the
“alphabet” is English words), or the set of valid Python
programs

+ Formal Language Theory provides a common framework
for studying properties of these languages, e.g.,

- Is this file a valid C++ program? A valid Czech
sentence?

— What is the structure?

- How hard / time-consuming is it to answer these
guestions?

The Chomsky Hierarchy

- Definitions: given
— an alphabet (),
— terminal symbols, e.g., a € 2
- nonterminal symbols, e.g., {S, N, A, B}
- a, 3, 7, strings of terminals and/or nonterminals

Type Rules Name Recognized by
3 A — aB Regular Regulgr
expressions
Pushdown
_} -
2 A 10/ Context-free e
. | iInear-bounded
— _
1 aA,B Cl}/ﬂ Context-sensitive Turing machine
Recursively . .
0 aAﬁ — y crmerable 1Uring Machines

Problems

- What is the value? - Who did what to whom?

5+7)* 11 Him the Almighty hurled

Dipanjan taught Johnmark

[f we have a grammar, we can answer these with parsing

Parsing

- If the grammar has certain properties (Type 2 or 3), we
can efficiently answer two questions with a parser

- Is the sentence in the language of the parser?
- What is the structure above that sentence?

Algorithms

- The CKY algorithm for parsing with constituency
grammars

- Transition-based parsing with dependency grammars

Chart parsing for constituency grammars

+ Maintains a chart of nonterminals spanning words, e.g.,
- NP over words 1..4 and 2..5
- VP over words 4..6 and 4..8

- elc

Chart parsing for constituency grammars

0S5

1VPs

oNP> 2oPPs, 2VPs
oNP1 3NPs

oNN71 1NN2,1VB2 2VB3,0IN3 3D14 4NN5

Time flies lIke an arrow
0 1 2 3 4 5

CKY algorithm

- How do we produce this chart? Cocke-Younger-Kasami (CYK/
CKY)

- Basic idea is to apply rules in a bottom-up fashion, applying all
rules, and (recursively) building larger constituents from
smaller ones

* Input: sentence of length N
for width in 2..N
for beginiin 1..{N - width}
j =1+ width
forsplitkin{i+1}.{ -1}
for all rulesA - BC
create iAj if iBk and kC;

CKY algorithm

Time flies lIke an arrow
0 1 2 3 4

CKY algorithm

NN NN, VB VB,IN DT NN

Time flies lIke an arrow
0 1 2 3 4

CKY algorithm

NP=NN NP—DT NN
NN NN VB VB, IN DT NN
Time flies like an arrow

0 1 2 3 Z

CKY algorithm

NP— NN NN PP— /N3 3NPs
NP=NN NP—DT NN
NN NN, VB VB, IN DT NN
Time flies like an arrow

0 1 2 3 Z

CKY algorithm

VP— 2VB3 3NPs
NP— NN NN PP— 2IN3 sNPs
NP=NN NP—DT NN
NN NN, VB VB, IN DT NN
Time flies like an arrow

0 1 2 3 Z

CKY algorithm

VP— VB PP
VP— >VB3 sNPs
NP— NN NN PP— 5IN3 3NPs
NP=NN NP—DT NN
NN NN, VB VB, IN DT NN
Iime flies like an arrow

0 1 2 3 Z

CKY algorithm

S — oNPi1 1VPs
VP— VB PP
VP— >VB3 sNPs
NP— NN NN PP— 5IN3 3NPs
NP=NN NP—DT NN
NN NN, VB VB, IN DT NN
Iime flies like an arrow

0 1 2 3 Z

CKY algorithm

S = oNP> 2VPs

S — oNPi1 1VPs
VP— VB PP
VP— >VB3 sNPs
NP— NN NN PP— 5IN3 3NPs
NP=NN NP—DT NN
NN NN, VB VB, IN DT NN
Iime flies like an arrow

0 1 2 3 Z

CKY algorithm

- Termination: is there a chart entry at ¢Sn?
- ¥ string is in the language
- Obtain the structure by following backpointers

- Not covered: adding probabilities to rules to resolve
amgibuities

Dependency parsing

- The situation is different in many ways
- We’re no longer building labeled constituents
- Instead, we’re searching for word dependencies

Dependency parsing

- The situation is different in many ways

- We’re no longer building labeled constituents

- Instead, we’re searching for word dependencies

- This is accomplished by a stack-based transition parser

- Repeatedly (a) shift a word onto the stack or (b) create
a LEFT or RIGHT dependency from the top two words

T oV M AY

ROOT human languages are hard to parse

relation

T oV M AY

ROOT human languages are hard to parse

relation

0 [] [human,langs,are,hard,to,parse] SHIFT

T oV M AY

ROOT human languages are hard to parse

relation

0 [] [human,langs,are,hard,to,parse] SHIFT
1 [human] [langs,are,hard,to,parse] SHIFT

T oV M AY

ROOT human languages are hard to parse

relation

0 [] [human,langs,are,hard,to,parse] SHIFT
1 [human] [langs,are,hard,to,parse] SHIFT

2 [human,langs] [are,hard,to,parse] LEFTARC human+langs

S N e T N A

ROOT human languages are hard to parse

relation
0 [] [human,langs,are,hard,to,parse] SHIFT
1 [human] [langs,are,hard,to,parse] SHIFT
2 [human,langs] [are,hard,to,parse] LEFTARC human+langs

3 [langs] [are,hard,to,parse] SHIFT

S N e T N A

ROOT human languages are hard to parse

relation
0 [] [human,langs,are,hard,to,parse] SHIFT
1 [human] [langs,are,hard,to,parse] SHIFT
2 [human,langs] [are,hard,to,parse] LEFTARC human+langs
3 [langs] [are,hard,to,parse] SHIFT
4 [langs,are] [hard,to,parse] LEFTARC langs+are

S N e T N A

ROOT human languages are hard to parse

relation
0 [] [human,langs,are,hard,to,parse] SHIFT
1 [human] [langs,are,hard,to,parse] SHIFT
2 [human,langs] [are,hard,to,parse] LEFTARC human+langs
3 [langs] [are,hard,to,parse] SHIFT
4 [langs,are] [hard,to,parse] LEFTARC langs+are
5 [are] [hard,to,parse] SHIFT

S N e T N A

ROOT human languages are hard to parse

relation

0 [] [human,langs,are,hard,to,parse] SHIFT

1 [human] [langs,are,hard,to,parse] SHIFT

2 [human,langs] [are,hard,to,parse] LEFTARC human+langs
3 [langs] [are,hard,to,parse] SHIFT

4 [langs,are] [hard,to,parse] LEFTARC langs+are
5 [are] [hard,to,parse] SHIFT

6 [are,hard] [to,parse] SHIFT

S N e T N A

ROOT human languages are hard to parse

relation

0 [] [human,langs,are,hard,to,parse] SHIFT

1 [human] [langs,are,hard,to,parse] SHIFT

2 [human,langs] [are,hard,to,parse] LEFTARC human+langs
3 [langs] [are,hard,to,parse] SHIFT

4 [langs,are] [hard,to,parse] LEFTARC langs+are
5 [are] [hard,to,parse] SHIFT

6 [are,hard] [to,parse] SHIFT

7 [are,hard,to] [parse] SHIFT

S N e T N A

ROOT human languages are hard to parse

relation

0 [] [human,langs,are,hard,to,parse] SHIFT

1 [human] [langs,are,hard,to,parse] SHIFT

2 [human,langs] [are,hard,to,parse] LEFTARC human+langs
3 [langs] [are,hard,to,parse] SHIFT

4 [langs,are] [hard,to,parse] LEFTARC langs+are

5 [are] [hard,to,parse] SHIFT

6 [are,hard] [to,parse] SHIFT

7 [are,hard,to] [parse] SHIFT

8 [are,hard,to,parse] [] LEFTARC to—parse

S N e T N A

ROOT human languages are hard to parse

relation
0 [] [human,langs,are,hard,to,parse] SHIFT
1 [human] [langs,are,hard,to,parse] SHIFT
2 [human,langs] [are,hard,to,parse] LEFTARC human+langs
3 [langs] [are,hard,to,parse] SHIFT
4 [langs,are] [hard,to,parse] LEFTARC langs+are
5 [are] [hard,to,parse] SHIFT
6 [are,hard] [to,parse] SHIFT
7 [are,hard,to] [parse] SHIFT
8 [are,hard,to,parse] [] LEFTARC to—parse
9 [are,hard,parse] [] RIGHTARC hard—parse

S N e T N A

ROOT human languages are hard to parse

relation
0 [] [human,langs,are,hard,to,parse] SHIFT
1 [human] [langs,are,hard,to,parse] SHIFT
2 [human,langs] [are,hard,to,parse] LEFTARC human+langs
3 [langs] [are,hard,to,parse] SHIFT
4 [langs,are] [hard,to,parse] LEFTARC langs+are
5 [are] [hard,to,parse] SHIFT
6 [are,hard] [to,parse] SHIFT
7 [are,hard,to] [parse] SHIFT
8 [are,hard,to,parse]] LEFTARC to—parse
9 [are,hard,parse] I RIGHTARC hard—parse

—
o

[are,hard]] RIGHTARC are—hard

© o N O O B~ W N

—_
— O

S N e T N A

ROOT human languages are hard to parse

stack

]

[human]

[human,langs]
[langs]
[langs,are]
[are]
[are,hard]
[are,hard,to]
[are,hard,to,parse]
[are,hard,parse]
[are,hard]

[are]

words

[human,langs,are,hard,to,parse]

[langs,are,hard,to,parse]

[are,hard,to,parse]
[are,hard,to,parse]
[hard,to,parse]
[hard,to,parse]
[to,parse]

[parse]

action
SHIFT
SHIFT
LEFTARC
SHIFT
LEFTARC
SHIFT
SHIFT
SHIFT
LEFTARC
RIGHTARC
RIGHTARC
RIGHTARC

relation

human+«langs

langs«are

to—parse
hard—parse
are—hard

ROOT—are

© o N O O B~ W N

-4 a4
nN —= O

S N e T N A

ROOT human languages are hard to parse

stack

]

[human]

[human,langs]
[langs]
[langs,are]
[are]
[are,hard]
[are,hard,to]
[are,hard,to,parse]
[are,hard,parse]
[are,hard]

[are]

]

words

[human,langs,are,hard,to,parse]

[langs,are,hard,to,parse]

[are,hard,to,parse]
[are,hard,to,parse]
[hard,to,parse]
[hard,to,parse]
[to,parse]

[parse]

action
SHIFT
SHIFT
LEFTARC
SHIFT
LEFTARC
SHIFT
SHIFT
SHIFT
LEFTARC
RIGHTARC
RIGHTARC
RIGHTARC
DONE

relation

human+«langs

langs«are

to—parse
hard—parse
are—hard

ROOT—are

Unanswered questions

- How do we score rules (for constituency parsing) and
actions and relations (for dependency parsing)?

- Probabilities can be read from Treebanks

- Actions can be informed by feature selection

- How do we know the right path to take?

- We can try multiple paths using beam search

- We get lots of savings via dynamic programming

summary

For context-free grammars,

the (weighted) CKY algorithm
can be used to find the most
probable (maximum a posteriori)
tree given a certain grammar

how can a
computer find

a sentence’s
structure?

For dependency grammars, the
most popular approach Is a variation
of transition-based parsers

Resources

- Demos:
- AllenNLP: https://demo.allennip.org
- Berkeley Neural Parser: https://parser.kitaev.io

- Spacy dependency parser: https://explosion.ai/demos/
displacy

https://demo.allennlp.org
https://parser.kitaev.io
https://explosion.ai/demos/displacy
https://explosion.ai/demos/displacy
https://demo.allennlp.org
https://parser.kitaev.io
https://explosion.ai/demos/displacy
https://explosion.ai/demos/displacy

Outline

where do
grammars
come from?

how can a
computer find

a sentence’s
structure?

59

Outline

what Is
syntax’?

the study of the
internal structure of
sentences (in natural
and synthetic
languages)

where do
grammars
come from?

how can a
computer find
a sentence’s
structure?

59

Outline

the study of the
internal structure of

they are created by

. linguists, usuall
sentences (in natural J y

and synthetic
languages)

under particular
grammatical theories

Outline

the study of the
internal structure of
sentences (in natural
and synthetic
languages)

they are created by
linguists, usually

under particular
grammatical theories

train a grammar from
a treebank and then
apply that grammar

{0 new sentences
using parsing
algorithms

